ΑΙhub.org
 

ACM statement on facial recognition technology


by
01 July 2020



share this:
ACM logo

The Association for Computing Machinery (ACM) U.S. Technology Policy Committee (USTPC) released a statement on 30 June calling for “an immediate suspension of the current and future private and governmental use of FR [facial recognition] technologies in all circumstances known or reasonably foreseeable to be prejudicial to established human and legal rights.”

In the document, the ACM write:

The Committee concludes that, when rigorously evaluated, the technology too often produces results demonstrating clear bias based on ethnic, racial, gender, and other human characteristics recognizable by computer systems. The consequences of such bias, USTPC notes, frequently can and do extend well beyond inconvenience to profound injury, particularly to the lives, livelihoods and fundamental rights of individuals in specific demographic groups, including some of the most vulnerable populations in our society.

Such bias and its effects are scientifically and socially unacceptable.

The USTPC find that, at present, facial recognition technology is not sufficiently mature and reliable to be used fairly and safely. Systems have been adopted by governments and industry before the necessary regulation and guiding principles have been put in place.

Therefore, the USTPC call for urgent development of standards and regulation and provide a list of guiding principles in the document. These cover the areas of accuracy, transparency, governance, risk management and accountability. Their recommendations include:

  • Before a facial recognition system is used to make or support decisions that can seriously adversely affect the human and legal rights of individuals, the magnitude and effects of such system’s initial and dynamic biases and inaccuracies must be fully understood.
  • When error rates are reported, they must be disaggregated by sex, race, and other context-dependent demographic features, as appropriate.
  • A facial recognition system should be activated only after some form of meaningful advance public notice of the intention to deploy it is provided and, once activated, ongoing public notice that it is in use should be provided at the point of use or online, as practicable and contextually appropriate. These notices should contain a description of the training data and details about the algorithm.
  • No facial recognition system should be deployed prior to establishing appropriate policies governing its use and the management of data collected by the system.
  • No facial recognition system should be made available or deployed unless its relevant material risks to vulnerable populations, or to society as a whole, can be sufficiently eliminated or remediated.
  • When harm results from the use of such systems, the organization, institution, or agency responsible for its deployment must be fully accountable under law for all resulting external risks and harms.

You can see the full list of recommendations and read the ACM USTPC statement in full here.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

A behaviour monitoring dataset of wild mammals in the Swiss Alps

  17 Jul 2025
Scientists at EPFL have created MammAlps, a multi-view, multi-modal video dataset that captures how wild mammals behave in the Swiss Alps.

#ICML2025 social media round-up 1

  16 Jul 2025
Find out what participants have been getting up to during the first couple of days of the conference.

Congratulations to the #ICML2025 award winners!

  16 Jul 2025
Find out which articles have won the outstanding paper, outstanding position paper, and the test-of-time awards.

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

  15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

What’s coming up at #RoboCup2025?

  10 Jul 2025
Find out when the different leagues competitions and the symposium are taking place.

Wildlife researchers train AI to better identify animal species in trail camera photos

  09 Jul 2025
Scientists are working on improving AI performance in wildlife monitoring through species and environment-specific training.

What’s on the programme at #ICML2025?

  07 Jul 2025
Find out what the International Conference on Machine Learning has in store.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence