ΑΙhub.org
 

ACM statement on facial recognition technology

by
01 July 2020



share this:
ACM logo

The Association for Computing Machinery (ACM) U.S. Technology Policy Committee (USTPC) released a statement on 30 June calling for “an immediate suspension of the current and future private and governmental use of FR [facial recognition] technologies in all circumstances known or reasonably foreseeable to be prejudicial to established human and legal rights.”

In the document, the ACM write:

The Committee concludes that, when rigorously evaluated, the technology too often produces results demonstrating clear bias based on ethnic, racial, gender, and other human characteristics recognizable by computer systems. The consequences of such bias, USTPC notes, frequently can and do extend well beyond inconvenience to profound injury, particularly to the lives, livelihoods and fundamental rights of individuals in specific demographic groups, including some of the most vulnerable populations in our society.

Such bias and its effects are scientifically and socially unacceptable.

The USTPC find that, at present, facial recognition technology is not sufficiently mature and reliable to be used fairly and safely. Systems have been adopted by governments and industry before the necessary regulation and guiding principles have been put in place.

Therefore, the USTPC call for urgent development of standards and regulation and provide a list of guiding principles in the document. These cover the areas of accuracy, transparency, governance, risk management and accountability. Their recommendations include:

  • Before a facial recognition system is used to make or support decisions that can seriously adversely affect the human and legal rights of individuals, the magnitude and effects of such system’s initial and dynamic biases and inaccuracies must be fully understood.
  • When error rates are reported, they must be disaggregated by sex, race, and other context-dependent demographic features, as appropriate.
  • A facial recognition system should be activated only after some form of meaningful advance public notice of the intention to deploy it is provided and, once activated, ongoing public notice that it is in use should be provided at the point of use or online, as practicable and contextually appropriate. These notices should contain a description of the training data and details about the algorithm.
  • No facial recognition system should be deployed prior to establishing appropriate policies governing its use and the management of data collected by the system.
  • No facial recognition system should be made available or deployed unless its relevant material risks to vulnerable populations, or to society as a whole, can be sufficiently eliminated or remediated.
  • When harm results from the use of such systems, the organization, institution, or agency responsible for its deployment must be fully accountable under law for all resulting external risks and harms.

You can see the full list of recommendations and read the ACM USTPC statement in full here.




AIhub Editor is dedicated to free high-quality information about AI.
AIhub Editor is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association