ΑΙhub.org
 

Tutorial on fairness, accountability, transparency and ethics in computer vision

by
14 July 2020



share this:

CVPR FATE
The Computer Vision and Pattern Recognition conference (CVPR) was held virtually on 14-19 June. As well as invited talks, posters and workshops, there were a number of tutorials on a range of topics. Timnit Gebru and Emily Denton were the organisers of one of the tutorials, which covered fairness, accountability, transparency and ethics in computer vision.

As the organisers write in the introduction to their tutorial, computer vision is no longer a purely academic endeavour; computer vision systems have been utilised widely across society. Such systems have been applied to law enforcement, border control, employment and healthcare.

Seminal works, such as the Gender Shades project (read the paper here), and organisations campaigning for equitable and accountable AI systems, such as The Algorithmic Justice League, have been instrumental in encouraging a rethink from some big tech companies regarding facial recognition systems, with Amazon, Microsoft and IBM all announcing that they would (for the time being) stop selling the technology to police forces.

This tutorial helps lay the foundations for community discussions about the ethical considerations of some of the current use cases of computer vision technology. The presentations also seek to highlight research which focusses on uncovering and mitigating issues of bias and historical discrimination.

The tutorial comprises three parts, to be watched in order.

Part 1: Computer vision in practice: who is benefiting and who is being harmed?

Speaker: Timnit Gebru

Part 2: Data ethics

Speakers: Timnit Gebru and Emily Denton

Part 3: Towards more socially responsible and ethics-informed research practices

Speaker: Emily Denton

Following the tutorial there was a panel discussion, moderated by Angjoo Kanazawa, which you can watch below.




AIhub Editor is dedicated to free high-quality information about AI.
AIhub Editor is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association