ΑΙhub.org
 

GPT-3 in tweets

by
26 August 2020



share this:

AIhub | Tweets round-up
Since OpenAI released GPT-3, you have probably come across examples of impressive and/or problematic content that people have used the model to generate. Here we summarise the outputs of GPT-3 as seen through the eyes of the Twitter-sphere.

GPT-3 is able to generate impressive examples, such as these.

However, caution is needed when using the model. Although it can produce good results, it is important to be aware of the limitations of such a system.

GPT-3 has been shown to replicate offensive and harmful phrases and concepts, like the examples presented in the following tweets.

This harmful concept generation is not limited to English.

It is important to note that GPT-2 had similar problems. This EMNLP paper by Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng pointed out the issue.

GPT-3 should indeed be used with caution.

 




Nedjma Ousidhoum is a postdoc at the University of Cambridge.
Nedjma Ousidhoum is a postdoc at the University of Cambridge.




            AIhub is supported by:


Related posts :



The Machine Ethics Podcast: featuring Marc Steen

In this episode, Ben chats to Marc Steen about AI as tools, the ethics of business models, writing "Ethics for People Who Work in Tech", and more.
06 June 2023, by

On privacy and personalization in federated learning: a retrospective on the US/UK PETs challenge

Studying the use of differential privacy in personalized, cross-silo federated learning.
05 June 2023, by

VISION AI Open Day: Trustworthy AI

Watch the roundtable discussion on trustworthy AI, with a focus on generative models, from the AI Open Day held in Prague.
02 June 2023, by

PeSTo: an AI tool for predicting protein interactions

The model can predict the binding interfaces of proteins when they bind other proteins, nucleic acids, lipids, ions, and small molecules.
01 June 2023, by

Tetris reveals how people respond to an unfair AI algorithm

An experiment in which two people play a modified version of Tetris revealed that players who get fewer turns perceive the other player as less likeable, regardless of whether a person or an algorithm allocates the turns.
31 May 2023, by

AIhub monthly digest: May 2023 – mitigating biases, ICLR invited talks, and Eurovision fun

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
30 May 2023, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association