ΑΙhub.org
 

fast.ai release new courses and more


by
04 September 2020



share this:
Online course

Have you been thinking about getting up to speed with deep learning or applied data ethics? Well, look no further than the latest free courses from fast.ai.

Fast.ai recently announced some exciting new releases. Here is their full list of available courses:

Practical deep learning for coders

This course covers the following topics:

  • How to train models that achieve state-of-the-art results in computer vision, natural language processing (NLP), tabular data and collaborative filtering.
  • How to turn models into web applications, and deploy them
  • Why and how deep learning models work, and how to use that knowledge to improve the accuracy, speed, and reliability of models
  • The latest deep learning techniques that really matter in practice
  • How to implement stochastic gradient descent and a complete training loop from scratch
  • How to think about the ethical implications of deep learning and its implementation

Part 2: deep learning from the foundations

Part 2 of the deep learning course shows how to build a state of the art deep learning model from scratch. It covers many topics from the foundations of implementing matrix multiplication and back-propagation, through to high performance mixed-precision training, and the latest neural network architectures and learning techniques.

Applied data ethics

This course focusses on ethics issues that are both urgent and practical. It covers the following topics:

  1. Disinformation
  2. Bias & fairness
  3. Ethical foundations & practical tools
  4. Privacy and surveillance
  5. How did we get here? Our ecosystem
  6. Algorithmic colonialism, and next steps

Computational linear algebra

In this course you can learn how to do matrix computations with acceptable speed and acceptable accuracy.

Code-first introduction to natural language processing

This course teaches a blend of traditional NLP topics (including regex, SVD, naive bayes, tokenization) and recent neural network approaches (including RNNs, seq2seq, attention, and the transformer architecture). It also addresses urgent ethical issues, such as bias and disinformation.

In addition to the courses, fast.ai also released four libraries:
fastai v2
fastcore
fastscript
fastgpu

About fast.ai

fast.ai is a self-funded research, software development, and teaching lab, focused on making deep learning more accessible. It was founded by Jeremy Howard and Rachel Thomas in 2016, with Sylvain Gugger completing the core team. They provide free courses, software libraries and research papers (with no ads), and pay all of the costs out of their own pockets. Jeremy and Sylvain have recently published a book entitled: “Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD”.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis

Microsoft cuts data centre plans and hikes prices in push to make users carry AI costs

  10 Mar 2025
Microsoft is trying to recoup the costs by raising prices, putting ads in products, and cancelling data centre leases

Report on the future of AI research

  07 Mar 2025
Find out more about a report released by the AAAI 2025 Presidential Panel.

Andrew Barto and Richard Sutton win 2024 Turing Award

  06 Mar 2025
Pair are recognised for their pioneering reinforcement learning research.

#AAAI2025 social media round-up: part two

  05 Mar 2025
What did the participants get up to during the second half of the conference?

Visualizing nanoparticle dynamics using AI-based method

  04 Mar 2025
A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association