ΑΙhub.org
 

AI will change the world. Who will change AI? We will.


by
05 October 2020



share this:

By Sophia Stiles

Editor’s Note: The following blog is a special guest post by a recent graduate of Berkeley BAIR’s AI4ALL summer program for high school students.

AI4ALL is a nonprofit dedicated to increasing diversity and inclusion in AI education, research, development, and policy.

The idea for AI4ALL began in early 2015 with Prof. Olga Russakovsky, then a Stanford University Ph.D. student, AI researcher Prof. Fei-Fei Li, and Rick Sommer – Executive Director of Stanford Pre-Collegiate Studies. They founded SAILORS as a summer outreach program for high school girls to learn about human-centered AI, which later became AI4ALL. In 2016, Prof. Anca Dragan started the Berkeley/BAIR AI4ALL camp, geared towards high school students from underserved communities.

Before I Started the Program

When I discovered AI4ALL during the spring semester, I was curious to learn more. I knew that AI had the potential to change everything and that it was something I’d love to be a part of. To prepare for the program, I read up on the BAIR faculty and checked out the BAIR student profiles. I watched Stuart Russell’s TED talk “3 principles for creating safer AI.” The people were all so highly accomplished. And their ideas seemed either super technical, or at the other end of the spectrum, they sounded more like topics from the philosophy department than the EECS department. I realized I had no idea what to expect but decided just to give it a try and get started.

The First Day

After logging into my first day of AI4ALL on Zoom, I was pleasantly surprised by the number of eager and welcoming faces. Among them were Tim Hurt, Eva Chao, Rachel Walsh, Ben Frazier, and Maya Maliviya. They were all there to help us feel comfortable and succeed!

We started off with a quick ice-breaker introduction activity. This particularly resonated with me because it wasn’t like the typical type you’d have on the first day of school. Instead, we were divided into virtual breakout rooms and asked to find as many similarities among our peers as possible. The program was already off to a great start! Within just a few minutes, I learned that five other people in the room have a sibling, have taken chemistry, like pizza, and had a quarantine haircut just like me! It was a great way to encourage collaboration and bonding.

Next, we were joined by BAIR lab professor Anca Dragan for a talk about AI. The presentation was hard to forget because of her passion, her curiosity, and the depth of her knowledge. Anca kickstarted the talk by explaining some examples of AI in real life. This was already so useful because it immediately cleared up the misconceptions about AI. In addition, it allowed everyone to have common, shared learning and not feel excluded if they didn’t know as much about AI before starting the program.

Another element of Anca’s presentation that stood out was her description of an AI game. The game is simple: a robot is positioned in a grid and gains points for reaching gems and loses points for falling in fire pits. Anca walked us through the AI “backstory” of the game. The robot’s goal is to maximize the points earned. As the game’s allotted time decreases, the robot takes less cautious paths (ex: avoiding fire pits) and places its primary focus on gaining points. We learned that this idea of optimization is a core part of all AI systems.

By the end of the day, we were immersed in a Python notebook while conversing with peers in a Breakout Room. AI4ALL equipped us with Python notebooks through Google Colab so we would all be on the same page when talking about code. I really enjoyed this part of the program because it was open-ended and the material was presented in such a clean and convenient fashion. As I read through the content and completed the coding exercises, I couldn’t help but also notice the amusing GIFs embedded here and there! What a memorable way to begin learning AI!

Midway Through the Program

Early on Day 3 of the 4 day AI4ALL program, I began to really understand the significance of AI. Through the eye-opening lecture presentations and discussions, I realized that AI really is everywhere! It’s in our YouTube recommendations, Spotify algorithms, Google Maps, and robotic surgery equipment. That range of applications is part of what makes AI so promising. AI really can be for everyone, whether you’re a developer or a user — it’s not limited to people with mad coding skills. Once I got acquainted with the basics of the subject, I began to see how almost any idea can be reshaped with AI.

I also learned that AI is often different from the way it’s presented in the media. Almost everyone is familiar with the idea of robots taking over jobs, but that isn’t necessarily what will happen. AI still has a long way to go before it will truly “take over the world,” as hypothesized. AI is a work in progress. Like its creators, it has biases. It can unintentionally discriminate. It has adversaries and struggles to find insights with incomplete data. Still, AI has the power to change basic aspects of our world. This is why it is so important to have people from as many backgrounds as possible involved in AI. Introducing people from many different backgrounds into the field allows for a better range of ideas and can help reduce the number of missed “red flags” that might later have a big impact on the lives of real people.

By the End of the Program…

The last two days of AI4ALL sped by in a blur. I couldn’t help but notice how well the program was organized. There was a balanced combination of lectures, discussion, and individual work time for coding and collaborating. I also loved how the content at the end of the program reinforced the content from the start. That aspect of the program’s structure made it so much easier to ask questions, remember ideas, and apply to future activities.

I particularly saw this idea of reinforcement demonstrated in Professor Kamalika Chaudhuri’s presentation about AI adversaries. She explained how AI algorithms could be manipulated so that an image correctly identified with 50% confidence as a panda would then identify the same image with 90% confidence as a gibbon. On the previous day, Professor Jacob Steinhardt explained how images that appeared similar to the human eye can be tweaked to disrupt AI’s algorithm. In another example, Kamalika described how image pixels could be stored as training data in the form of vectors. This idea built off of Tim Hurt’s earlier point that training data is a result of an input being translated into computer language (e.g. a vector x), and then mapped to a label output (y).

After most of the lectures were done, we began working on our group projects. We were divided into five groups, with each group under the instruction of a Berkeley Ph.D. student. I chose to be in the “Overcooked” group, which was with first-year EECS student Micah Carroll. Micah walked us through the game he’s been using in his research, called Overcooked-AI. Simply put, Overcooked-AI is all about getting the most number of onion soups delivered while cooking in a cramped kitchen.

Once again, we used Colab Notebooks to learn and experiment with the game’s code. Micah patiently took us through the basics of imitation learning, reinforcement learning, decision trees, and graph fitting/displays. He was so open to questions and never hesitated to help! The hours we spent together breezed by, and soon enough I found myself crafting up a final presentation recapping all that I learned. Time really passes when you’re enjoying and learning.

Final Thoughts

In less than a week, the AI4ALL program has shaped my view of AI and my learning process. The lectures, advice panels, and project groups came together to make an unforgettable experience. Beyond learning what AI is and how it works, I now realize that everyone has the potential to explore AI. All you have to do is start. And so, the next time you hear someone say “AI will change the world, but who will change AI?”, you can say with confidence “we will!”

Thank you so much to everyone who made AI4ALL possible!

This article was initially published on the BAIR blog, and appears here with the authors’ permission.




BAIR blog




            AIhub is supported by:


Related posts :



Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.

The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association