ΑΙhub.org
 

Radical AI podcast: featuring Jenn Wortman Vaughan

by
06 October 2020



share this:


Hosted by Dylan Doyle-Burke and Jessie J Smith, Radical AI is a podcast featuring the voices of the future in the field of artificial intelligence ethics. In this episode Jess and Dylan chat to Jenn Wortman Vaughan about building responsible AI.

Designing for Intelligibility: building responsible AI with Jenn Wortman Vaughan

What are the differences between explainability, intelligibility, interpretability, and transparency in Responsible AI? What is human-centered machine learning? Should we be regulating machine learning transparency?

To answer these questions and more we welcome Dr Jenn Wortman Vaughan to the show. Jenn is a Senior Principal Researcher at Microsoft Research. She has been leading efforts at Microsoft around transparency, intelligibility, and explanation under the umbrella of Aether, their company-wide initiative focused on responsible AI. Jenn’s research focuses broadly on the interaction between people and AI, with a passion for AI that augments, rather than replaces, human abilities.. Full show notes for this episode can be found at Radical AI.

Listen to the episode below:

About Radical AI:

Hosted by Dylan Doyle-Burke, a PhD student at the University of Denver, and Jessie J Smith, a PhD student at the University of Colorado Boulder, Radical AI is a podcast featuring the voices of the future in the field of Artificial Intelligence Ethics.

Radical AI lifts up people, ideas, and stories that represent the cutting edge in AI, philosophy, and machine learning. In a world where platforms far too often feature the status quo and the usual suspects, Radical AI is a breath of fresh air whose mission is “To create an engaging, professional, educational and accessible platform centering marginalized or otherwise radical voices in industry and the academy for dialogue, collaboration, and debate to co-create the field of Artificial Intelligence Ethics.”

Through interviews with rising stars and experts in the field we boldly engage with the topics that are transforming our world like bias, discrimination, identity, accessibility, privacy, and issues of morality.

To find more information regarding the project, including podcast episode transcripts and show notes, please visit Radical AI.




The Radical AI Podcast




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association