ΑΙhub.org
 

New device monitors blood glucose levels using radar and AI


by
15 October 2020



share this:
Researchers test a prototype of a new diabetes device for prick-free glucose monitoring.

New technology can quickly and accurately monitor glucose levels in people with diabetes without painful finger pricks to draw blood. A palm-sized device developed by researchers at the University of Waterloo uses radar and artificial intelligence (AI) to non-invasively read blood inside the human body.

“The key advantage is simply no pricking,” said George Shaker, an engineering professor at Waterloo. “That is extremely important for a lot of people, especially elderly people with very sensitive skin and children who require multiple tests throughout the day.”

About the same size as existing glucometers, the rectangular device works by sending radio waves through the skin and into blood vessels when users place the tip of their finger on a touchpad. The waves are then reflected back to the device for signal processing and analysis by a machine learning algorithm (principal component analysis), telling users within seconds whether their blood sugar has gone up, down or remained the same.

Changes are measured in relation to a baseline reading that would be obtained every few weeks with a glucometer or a laboratory blood test to ensure accuracy.

“Our safe, reusable, pain-free device would eliminate the need for implanted sensors, patches or devices that use chemical reactions or fluid transfer through the skin,” said Ala Eldin Omer, an engineering PhD student who led the project.

Researchers are now exploring commercialization of the inexpensive technology – they estimate the device would retail for less than $500 – and developing a wearable device similar to a smartwatch that would be on at all times.

“This finding paves the way for continuous monitoring,” said Shaker. “Given the current pace of progress, I expect the technology to be available in a wearable form within the next couple of years.”

Safieddin (Ali) Safavi-Naeini, also an engineering professor at Waterloo, said the science at the heart of the diabetes device potentially has several additional applications. “Since many ingredients of blood have distinct electromagnetic properties, the same technology could be extended to other types of blood analysis and medical diagnosis,” he said.

Much of the work was conducted at the Wireless Sensors and Devices Lab and the Centre for Intelligent Antenna and Radio Systems (CIARS) at Waterloo. Collaborators included several researchers at Sorbonne University in Paris.

Read the paper in full

Low‑cost portable microwave sensor for non‑invasive monitoring of blood glucose level: novel design utilizing a four‑cell CSRR hexagonal confguration
Ala Eldin Omer, George Shaker, Safeddin Safavi‑Naeini, Hamid Kokabi, Georges Alquié, Frédérique Deshours & Raed M. Shubair.




University of Waterloo




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: March 2025 – human-allied AI, differential privacy, and social media microtargeting

  28 Mar 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AI ring tracks spelled words in American Sign Language

  27 Mar 2025
In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling.

How AI images are ‘flattening’ Indigenous cultures – creating a new form of tech colonialism

  26 Mar 2025
AI-generated stock images that claim to depict “Indigenous Australians”, don’t resemble Aboriginal and Torres Strait Islander peoples.

Interview with Lea Demelius: Researching differential privacy

  25 Mar 2025
We hear from doctoral consortium participant Lea Demelius who is investigating the trade-offs and synergies that arise between various requirements for trustworthy AI.

The Machine Ethics podcast: Careful technology with Rachel Coldicutt

This episode, Ben chats to Rachel Coldicutt about AI taxonomy, innovating for everyone not just the few, responsibilities of researchers, and more.

Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association