ΑΙhub.org
 

New device monitors blood glucose levels using radar and AI


by
15 October 2020



share this:
Researchers test a prototype of a new diabetes device for prick-free glucose monitoring.

New technology can quickly and accurately monitor glucose levels in people with diabetes without painful finger pricks to draw blood. A palm-sized device developed by researchers at the University of Waterloo uses radar and artificial intelligence (AI) to non-invasively read blood inside the human body.

“The key advantage is simply no pricking,” said George Shaker, an engineering professor at Waterloo. “That is extremely important for a lot of people, especially elderly people with very sensitive skin and children who require multiple tests throughout the day.”

About the same size as existing glucometers, the rectangular device works by sending radio waves through the skin and into blood vessels when users place the tip of their finger on a touchpad. The waves are then reflected back to the device for signal processing and analysis by a machine learning algorithm (principal component analysis), telling users within seconds whether their blood sugar has gone up, down or remained the same.

Changes are measured in relation to a baseline reading that would be obtained every few weeks with a glucometer or a laboratory blood test to ensure accuracy.

“Our safe, reusable, pain-free device would eliminate the need for implanted sensors, patches or devices that use chemical reactions or fluid transfer through the skin,” said Ala Eldin Omer, an engineering PhD student who led the project.

Researchers are now exploring commercialization of the inexpensive technology – they estimate the device would retail for less than $500 – and developing a wearable device similar to a smartwatch that would be on at all times.

“This finding paves the way for continuous monitoring,” said Shaker. “Given the current pace of progress, I expect the technology to be available in a wearable form within the next couple of years.”

Safieddin (Ali) Safavi-Naeini, also an engineering professor at Waterloo, said the science at the heart of the diabetes device potentially has several additional applications. “Since many ingredients of blood have distinct electromagnetic properties, the same technology could be extended to other types of blood analysis and medical diagnosis,” he said.

Much of the work was conducted at the Wireless Sensors and Devices Lab and the Centre for Intelligent Antenna and Radio Systems (CIARS) at Waterloo. Collaborators included several researchers at Sorbonne University in Paris.

Read the paper in full

Low‑cost portable microwave sensor for non‑invasive monitoring of blood glucose level: novel design utilizing a four‑cell CSRR hexagonal confguration
Ala Eldin Omer, George Shaker, Safeddin Safavi‑Naeini, Hamid Kokabi, Georges Alquié, Frédérique Deshours & Raed M. Shubair.




University of Waterloo




            AIhub is supported by:


Related posts :



Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

#AAAI2025 workshops round-up 3: Neural reasoning and mathematical discovery, and AI to accelerate science and engineering

  19 May 2025
We find out about three more of the workshops that took place at AAAI 2025.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence