ΑΙhub.org
 

Preparing for emergency response with partial network information


by
15 December 2020



share this:

By Kristen Perez, Machine Learning Center at Georgia Tech and School of Computational Science and Engineering.

Natural disasters cause considerable economic damage, loss of life, and network disruptions each year. As emergency response and infrastructure systems are interdependent and interconnected, quick assessment and repair in the event of disruption is critical.

School of Computational Science and Engineering (CSE) Associate Professor B. Aditya Prakash is leading a collaborative effort with researchers from Georgia Institute of Technology, University of Oklahoma, University of Iowa, and University of Virginia to determine the state of an infrastructure network during such a disruption. Prakash’s group has also been collaborating closely with the Oak Ridge National Laboratory on such problems in critical infrastructure networks.

However, according to Prakash, quickly determining which infrastructure components are damaged in the event of a disaster is not easily done after a disruption.

“If there is a disruption caused by an earthquake or hurricane and some things go down in the power grid, critical infrastructure system, transportation network, or the energy distribution network, how do you figure out what things have failed?” asked Prakash.

“The big problem in figuring out what has gone wrong is that all of these networks are highly decentralized and spread out. Usually there will be no central command or ‘oracle’ that immediately knows perfectly what is out, what is on, what is fine, and what is not.”

Given these networks’ decentralized organization and sparse installation of real-time monitoring systems, only a partial observation of the network is typically available after a disaster.

By using connectivity queries to map network states,­ Prakash’s team outlines in their recent paper how to determine the damage of an entire network from the portion of observable and operational nodes.

The team aims to infer failed network components by examining two-node characteristics: The partial information available from reachable nodes and a small sample of point probes which are typically more practical to obtain in a failure.

Modeling their research on real utility network data gathered by the University of Oklahoma, Prakash’s team proposes using an information-theoretic formulation called the minimum description length (MDL) principle. This is the notion that the best way to describe any data is the shortest one. Hence the researchers try to find those failed components, particularly the critical ones affecting overall system performance, which contain enough information to effectively minimize the MDL cost.

Alexander Rodriguez, a CSE Ph.D. student and lead author, presented the findings of this research this week at the 2020 Neural Processing and Information Systems (NeurIPS) conference as part of the Workshop on Artificial Intelligence for Humanitarian Assistance and Disaster Response.



tags: ,


Machine Learning Center at Georgia Tech




            AIhub is supported by:


Related posts :



Machine learning powers new approach to detecting soil contaminants

  06 Jun 2025
Method spots pollutants without experimental reference samples.

What is AI slop? Why you are seeing more fake photos and videos in your social media feed

  05 Jun 2025
AI-generated low-quality news sites are popping up all over the place, and AI images are also flooding social media platforms

The Machine Ethics podcast – DeepDive: AI and the environment

In the 100th episode of the podcast, Ben talks to four experts in the field.

Interview with Debalina Padariya: Privacy-preserving generative models

  03 Jun 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Forthcoming machine learning and AI seminars: June 2025 edition

  02 Jun 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 June and 31 July 2025.
monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence