ΑΙhub.org
 

One Hundred Year Study on Artificial Intelligence (AI100) – a panel discussion at #IJCAI-PRICAI 2020


by
21 January 2021



share this:
IJCAI-PRICAI2020 LOGO

One of the panel discussions at IJCAI-PRICAI 2020 focussed on the One Hundred Year Study on Artificial Intelligence (AI100). The mission of AI100 is to launch a study every five years, over the course of a century, to better track and anticipate how artificial intelligence propagates through society, and how it shapes different aspects of our lives. This IJCAI session brought together some of the people involved in the AI100 initiative to discuss their efforts and the direction of the project.

Taking part in the panel discussion were:

  • Mary L Gray (Microsoft Research & Harvard University)
  • Peter Stone (University of Texas at Austin)
  • David Robinson (Cornell University)
  • Johannes Himmelreich (Syracuse University)
  • Thomas Arnold (Tufts University)
  • Russ Altman (Stanford University)

The goals of the AI100 are “to support a longitudinal study of AI advances on people and society, centering on periodic studies of developments, trends, futures, and potential disruptions associated with the developments in machine intelligence, and formulating assessments, recommendations and guidance on proactive efforts”.

Working on the AI100 project are a standing committee and a study panel. The first study panel report, released in 2016, can be read in full here. This reports provide insights from people who work closely in the field, in part to counter the external perceptions and the hype which surround AI, and to accurately portray what is going on in the field. The intended audience for this report is broad, ranging from AI researchers to the general public, from industry to policy makers.

The second study panel report, expected in late 2021, is now underway. It will be based, in part, on two study-workshops commissioned by the AI100 standing committee, one entitled “Coding Caring” and the other “Prediction in Practice”.

In the first part of the session, the panellists discussed their experiences from the two study workshops. These study groups brought together a whole range of stakeholders, including academics (from different disciplines), start-ups, care-givers, and other practitioners. They also brought in people who had created high-stakes AI applications and found out what it was like to maintain and integrate AI applications as part of a larger system. Their aim was to address conceptual, ethical and political issues via a multidisciplinary approach. Balancing the needs of systems users, customers, start-ups and the public sector is a fiendishly difficult challenge, but one that it is necessary to address.

In the second part of the session, we heard views on the value of the AI100 initiative. AI100 allows a periodic, longitudinal view of how AI is viewed by society, and aims to report realistic hopes and concerns. AI has progressed to the point where we need to be having conversations with practitioners about the implications of deploying AI systems in settings such as care and law. AI researchers should be aware of how their work impacts society.

Find out more about the next report here.



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

  18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.

The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Graphic novel explains the environmental impact of AI

  11 Jun 2025
EPFL’s Center for Learning Sciences has released Utop’IA, an educational graphic novel that explores the environmental impact of artificial intelligence.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence