ΑΙhub.org
 

AI and climate change – a virtual briefing with Climate Change AI researchers


by
03 February 2021



share this:
earth

In December, Heinrich-Böll-Stiftung hosted a virtual briefing featuring researchers from Climate Change AI (CCAI). They talked about the role machine learning can play in facilitating climate change mitigation and adaptation strategies, AI applications that increase emissions, and energy use in AI itself.

AIhub focus issue on climate action

On the topic of facilitating climate change mitigation and adaptation strategies, a number of examples were given where AI could help. These include: gathering information, forecasting, improving operational efficiencies, predictive maintenance, accelerating scientific experimentation, and approximating time-intensive simulations.

The researchers then talked about AI applications that increase emissions. There are two aspects to this. Firstly, the use of AI in applications that directly increase emissions, such as use in the oil, gas and mining industries. Secondly, AI applications with uncertain impact. For example, AI is a key component in creating new technologies, like autonomous vehicles. In technologies such as these there is no clear understanding of whether their implementation would have a positive or negative effect on the climate.

The team discussed the energy consumption of AI systems. They touched on the need to understand the power consumption for applications during both the training and usage phases.

Finally, we heard about the role of policy implementation with regards to aligning the use of AI with climate change strategies.

You can watch the briefing in full here:

Taking part in the session were:

  • Priya L. Donti, Carnegie Mellon University, and Co-founder and Chair, Climate Change AI
  • Lynn H. Kaack, ETH Zürich, and Co-founder and Chair, Climate Change AI
  • David Rolnick, McGill University and Mila, and Co-founder and Chair, Climate Change AI

CCAI is a group of volunteers from academia and industry who believe that tackling climate change requires concerted societal action, in which machine learning can play an impactful role.

Read the paper Artificial Intelligence and Climate Change: Opportunities, considerations, and policy levers to align AI with climate change goals by Lynn H. Kaack, Priya Donti, Emma Strubell and David Rolnick.



tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis

Microsoft cuts data centre plans and hikes prices in push to make users carry AI costs

  10 Mar 2025
Microsoft is trying to recoup the costs by raising prices, putting ads in products, and cancelling data centre leases

Report on the future of AI research

  07 Mar 2025
Find out more about a report released by the AAAI 2025 Presidential Panel.

Andrew Barto and Richard Sutton win 2024 Turing Award

  06 Mar 2025
Pair are recognised for their pioneering reinforcement learning research.

#AAAI2025 social media round-up: part two

  05 Mar 2025
What did the participants get up to during the second half of the conference?

Visualizing nanoparticle dynamics using AI-based method

  04 Mar 2025
A team of scientists has developed a method to illuminate the dynamic behavior of nanoparticles.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association