ΑΙhub.org
 

AI and climate change – a virtual briefing with Climate Change AI researchers


by
03 February 2021



share this:
earth

In December, Heinrich-Böll-Stiftung hosted a virtual briefing featuring researchers from Climate Change AI (CCAI). They talked about the role machine learning can play in facilitating climate change mitigation and adaptation strategies, AI applications that increase emissions, and energy use in AI itself.

AIhub focus issue on climate action

On the topic of facilitating climate change mitigation and adaptation strategies, a number of examples were given where AI could help. These include: gathering information, forecasting, improving operational efficiencies, predictive maintenance, accelerating scientific experimentation, and approximating time-intensive simulations.

The researchers then talked about AI applications that increase emissions. There are two aspects to this. Firstly, the use of AI in applications that directly increase emissions, such as use in the oil, gas and mining industries. Secondly, AI applications with uncertain impact. For example, AI is a key component in creating new technologies, like autonomous vehicles. In technologies such as these there is no clear understanding of whether their implementation would have a positive or negative effect on the climate.

The team discussed the energy consumption of AI systems. They touched on the need to understand the power consumption for applications during both the training and usage phases.

Finally, we heard about the role of policy implementation with regards to aligning the use of AI with climate change strategies.

You can watch the briefing in full here:

Taking part in the session were:

  • Priya L. Donti, Carnegie Mellon University, and Co-founder and Chair, Climate Change AI
  • Lynn H. Kaack, ETH Zürich, and Co-founder and Chair, Climate Change AI
  • David Rolnick, McGill University and Mila, and Co-founder and Chair, Climate Change AI

CCAI is a group of volunteers from academia and industry who believe that tackling climate change requires concerted societal action, in which machine learning can play an impactful role.

Read the paper Artificial Intelligence and Climate Change: Opportunities, considerations, and policy levers to align AI with climate change goals by Lynn H. Kaack, Priya Donti, Emma Strubell and David Rolnick.



tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.

What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

Applying machine learning to chip design and manufacturing: interview with Lorenzo Servadei

  14 Oct 2025
Find out how Lorenzo and his team are using ML and Electronic Design Automation.

Why we should be skeptical of the hasty global push to test 15-year-olds’ AI literacy in 2029

  13 Oct 2025
Are schools set to become testing grounds for AI developments?

Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence