ΑΙhub.org
 

AI4Industry pilot releases first demonstration video

by
08 February 2021



share this:
AI4industry video capture
Screengrab from the demonstration video produced by AI4Industry

By AI4EU’s AI4Industry pilot team

AI4EU’s pilot AI4Industry released its first video to demonstrate how AI techniques can help develop flexible and transparent manufacturing. The techniques, including semantic technologies, answer set programming, and machine learning, are demonstrated in an experimental plant provided by Evosoft.

The AI4Industry pilot aims to create a tool that assists engineers in production planning, getting insights about potential problems in manufacturing, and estimating the time needed to complete an incoming product request.

The tool consists of 3 main parts: skill matching and explanations, planning, and time prediction. Skill matching represents producibility checking, i.e. checking whether a certain product can be produced by the set of available machines in the factory.

The explanations function provides a list of statements that presents the reasons why a certain product cannot be produced, essentially explaining to humans why production stops. The planning function creates a list of steps that are needed to manufacture a product. Introduced as a small modification to the planning technique, the plan repair program provides explanations to humans of issues in the factory or the production goal.

Finally, how does the planner know how much time production will take? The time prediction component, which based on a machine-learning algorithm, estimates the production time per product. We show the experimental factory of Evosoft producing caps on cans with different colours and the results of these methods in a basic mock-up UI.

The AI4Industry pilot, a collaboration between Siemens AG, TU Wien, and Fraunhofer IAIS, is one of the eight pilots to be carried out during the lifetime of the AI4EU project to provide insights on real scenarios in the selected areas.




AI4EU




            AIhub is supported by:


Related posts :



Keeping learning-based control safe by regulating distributional shift

We propose a new framework to reason about the safety of a learning-based controller with respect to its training distribution.
30 September 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
29 September 2022, by

#IJCAI2022 distinguished paper – Plurality veto: A simple voting rule achieving optimal metric distortion

How can we create a voting system that best represents the preferences of the voters?
28 September 2022, by

AIhub monthly digest: September 2022 – environmental conservation, retrosynthesis, and RoboCup

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
27 September 2022, by

The Machine Ethics Podcast: Rights, trust and ethical choice with Ricardo Baeza-Yates

Host Ben Byford chats to Ricardo Baeza-Yates about responsible AI, the importance of AI governance, questioning people's intent to create AGI, and more.
26 September 2022, by

Recurrent model-free RL can be a strong baseline for many POMDPs

Considering an approach for dealing with realistic problems with noise and incomplete information.
23 September 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association