ΑΙhub.org
 

AI4Industry pilot releases first demonstration video

by
08 February 2021



share this:
AI4industry video capture
Screengrab from the demonstration video produced by AI4Industry

By AI4EU’s AI4Industry pilot team

AI4EU’s pilot AI4Industry released its first video to demonstrate how AI techniques can help develop flexible and transparent manufacturing. The techniques, including semantic technologies, answer set programming, and machine learning, are demonstrated in an experimental plant provided by Evosoft.

The AI4Industry pilot aims to create a tool that assists engineers in production planning, getting insights about potential problems in manufacturing, and estimating the time needed to complete an incoming product request.

The tool consists of 3 main parts: skill matching and explanations, planning, and time prediction. Skill matching represents producibility checking, i.e. checking whether a certain product can be produced by the set of available machines in the factory.

The explanations function provides a list of statements that presents the reasons why a certain product cannot be produced, essentially explaining to humans why production stops. The planning function creates a list of steps that are needed to manufacture a product. Introduced as a small modification to the planning technique, the plan repair program provides explanations to humans of issues in the factory or the production goal.

Finally, how does the planner know how much time production will take? The time prediction component, which based on a machine-learning algorithm, estimates the production time per product. We show the experimental factory of Evosoft producing caps on cans with different colours and the results of these methods in a basic mock-up UI.

The AI4Industry pilot, a collaboration between Siemens AG, TU Wien, and Fraunhofer IAIS, is one of the eight pilots to be carried out during the lifetime of the AI4EU project to provide insights on real scenarios in the selected areas.




AI4EU




            AIhub is supported by:


Related posts :



PeSTo: an AI tool for predicting protein interactions

The model can predict the binding interfaces of proteins when they bind other proteins, nucleic acids, lipids, ions, and small molecules.
01 June 2023, by

Tetris reveals how people respond to an unfair AI algorithm

An experiment in which two people play a modified version of Tetris revealed that players who get fewer turns perceive the other player as less likeable, regardless of whether a person or an algorithm allocates the turns.
31 May 2023, by

AIhub monthly digest: May 2023 – mitigating biases, ICLR invited talks, and Eurovision fun

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
30 May 2023, by

Latest AI announcements from the US Government include updated strategic plan

Find out more about the latest initiatives pertaining to responsible AI in the USA.
26 May 2023, by

Interview with Haotian Xue: learning intuitive physics from videos

A framework for learning 3D-grounded visual intuitive physics models from videos of complex scenes.
25 May 2023, by

Using engineered bacteria and AI to sense and record environmental signals

Synthetic biologists engineer bacterial swarm patterns to visibly record environment and use deep learning to decode patterns.





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association