ΑΙhub.org
 

Bipedal robot developed at Oregon State learns to run


by
11 August 2021



share this:

Cassie the robotImage courtesy of Jonathan Hurst, Oregon State University.

By Steve Lundeberg

Cassie the robot, invented at Oregon State University and produced by OSU spinout company Agility Robotics, has made history by traversing 5 kilometres outdoors in just over 53 minutes. The robot was developed under the direction of robotics professor Jonathan Hurst with a 16-month, $1 million grant from the Advanced Research Projects Agency of the U.S. Department of Defense.

Since Cassie’s introduction in 2017, OSU students funded by the National Science Foundation have been exploring machine learning options for the robot.

“The Dynamic Robotics Laboratory students in the OSU College of Engineering combined expertise from biomechanics and existing robot control approaches with new machine learning tools,” said Hurst, who co-founded Agility in 2017. “This type of holistic approach will enable animal-like levels of performance. It’s incredibly exciting.”

Cassie, with knees that bend like an ostrich’s, taught itself to run with what’s known as a deep reinforcement learning algorithm. Running requires dynamic balancing – the ability to maintain balance while switching positions or otherwise being in motion – and Cassie has learned to make infinite subtle adjustments to stay upright while moving.

“Cassie is a very efficient robot because of how it has been designed and built, and we were really able to reach the limits of the hardware and show what it can do,” said Jeremy Dao, a Ph.D. student in the Dynamic Robotics Laboratory.

“Deep reinforcement learning is a powerful method in AI that opens up skills like running, skipping and walking up and down stairs,” added Yesh Godse, an undergraduate in the lab.

Hurst said walking robots will one day be a common sight – much like the automobile, and with a similar impact. The limiting factor has been the science and understanding of legged locomotion, but research at Oregon State has enabled multiple breakthroughs.

ATRIAS, developed in the Dynamic Robotics Laboratory, was the first robot to reproduce human walking gait dynamics. Following ATRIAS was Cassie, then came Agility’s humanoid robot Digit.

“In the not very distant future, everyone will see and interact with robots in many places in their everyday lives, robots that work alongside us and improve our quality of life,” Hurst said.

During the 5K, Cassie’s total time of 53 minutes included about 6.5 minutes of resets following two falls: one because of an overheated computer, the other because the robot was asked to execute a turn at too high a speed.

In a related project, Cassie has become adept at walking up and down stairs.



tags:


Oregon State University




            AIhub is supported by:



Related posts :



What are small language models and how do they differ from large ones?

  06 Jan 2026
Let’s explore what makes SLMs and LLMs different – and how to choose the right one for your situation.

Forthcoming machine learning and AI seminars: January 2026 edition

  05 Jan 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 January and 28 February 2026.

AAAI presidential panel – AI perception versus reality video discussion

  02 Jan 2026
Watch the second panel discussion in this series from AAAI.

More than half of new articles on the internet are being written by AI

  31 Dec 2025
The line between human and machine authorship is blurring, particularly as it’s become increasingly difficult to tell whether something was written by a person or AI.
monthly digest

2025 digest of digests

  30 Dec 2025
We look back through the archives of our monthly digests to pick out some highlights from the year.
monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence