ΑΙhub.org
 

Bipedal robot developed at Oregon State learns to run

by
11 August 2021



share this:

Cassie the robotImage courtesy of Jonathan Hurst, Oregon State University.

By Steve Lundeberg

Cassie the robot, invented at Oregon State University and produced by OSU spinout company Agility Robotics, has made history by traversing 5 kilometres outdoors in just over 53 minutes. The robot was developed under the direction of robotics professor Jonathan Hurst with a 16-month, $1 million grant from the Advanced Research Projects Agency of the U.S. Department of Defense.

Since Cassie’s introduction in 2017, OSU students funded by the National Science Foundation have been exploring machine learning options for the robot.

“The Dynamic Robotics Laboratory students in the OSU College of Engineering combined expertise from biomechanics and existing robot control approaches with new machine learning tools,” said Hurst, who co-founded Agility in 2017. “This type of holistic approach will enable animal-like levels of performance. It’s incredibly exciting.”

Cassie, with knees that bend like an ostrich’s, taught itself to run with what’s known as a deep reinforcement learning algorithm. Running requires dynamic balancing – the ability to maintain balance while switching positions or otherwise being in motion – and Cassie has learned to make infinite subtle adjustments to stay upright while moving.

“Cassie is a very efficient robot because of how it has been designed and built, and we were really able to reach the limits of the hardware and show what it can do,” said Jeremy Dao, a Ph.D. student in the Dynamic Robotics Laboratory.

“Deep reinforcement learning is a powerful method in AI that opens up skills like running, skipping and walking up and down stairs,” added Yesh Godse, an undergraduate in the lab.

Hurst said walking robots will one day be a common sight – much like the automobile, and with a similar impact. The limiting factor has been the science and understanding of legged locomotion, but research at Oregon State has enabled multiple breakthroughs.

ATRIAS, developed in the Dynamic Robotics Laboratory, was the first robot to reproduce human walking gait dynamics. Following ATRIAS was Cassie, then came Agility’s humanoid robot Digit.

“In the not very distant future, everyone will see and interact with robots in many places in their everyday lives, robots that work alongside us and improve our quality of life,” Hurst said.

During the 5K, Cassie’s total time of 53 minutes included about 6.5 minutes of resets following two falls: one because of an overheated computer, the other because the robot was asked to execute a turn at too high a speed.

In a related project, Cassie has become adept at walking up and down stairs.



tags:


Oregon State University




            AIhub is supported by:


Related posts :



How to evaluate jailbreak methods: a case study with the StrongREJECT benchmark

Providing a more accurate assessment of jailbreak effectiveness.
09 September 2024, by

CLAIRE AQuA: AI for citizens

Watch the recording of the latest CLAIRE All Questions Answered session.
06 September 2024, by

Developing a system for real-time sensing of flooded roads

Research fuses multiple data sources with AI model for enhanced sensing of road conditions.
05 September 2024, by

Forthcoming machine learning and AI seminars: September 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2024.
02 September 2024, by

Causal inference under incentives: an annotated reading list

This annotated reading list is intended to serve as a brief summary of work on causal inference in the presence of strategic agents.
30 August 2024, by

AIhub monthly digest: August 2024 – IJCAI, neural operators, and sequential decision making

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
29 August 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association