ΑΙhub.org
 

Cynthia Rudin wins AAAI Squirrel AI Award


by
15 October 2021



share this:
Cynthia Rudin

Cynthia Rudin, professor of computer science at Duke University, USA, has become the second recipient of the AAAI Squirrel AI Award. She was awarded the 2022 prize for pioneering scientific work in the area of interpretable and transparent AI systems in real-world deployments, the advocacy for these features in highly sensitive areas such as social justice and medical diagnosis, and serving as a role model for researchers and practitioners.

Cynthia talks about the prize, and what inspires her work, in this short video from Duke University:

Cynthia has worked on a variety of research topics during her career. The first applied project used machine learning to predict which manholes in New York City were at risk of exploding due to degrading and overloaded electrical circuitry.

An area of particular focus for Cynthia is interpretable machine learning, which she has applied in different settings. She, and her collaborators, designed a simple point-based system that can predict which patients are most at risk of having destructive seizures after a stroke or other brain injury. She also works on interpretable models in the field of criminal justice.

About the AAAI Squirrel AI Award

The AAAI Squirrel AI Award for Artificial Intelligence for the Benefit of Humanity recognizes positive impacts of artificial intelligence to protect, enhance, and improve human life in meaningful ways with long-lived effects. The award is given annually at the conference for the Association for the Advancement of Artificial Intelligence (AAAI), and is accompanied by a prize of $1,000,000 plus travel expenses to the conference. Financial support for the award is provided by Squirrel AI. The award was given for the first time in 2021.

Cynthia Rudin biography

Cynthia earned undergraduate degrees in mathematical physics and music theory from the University at Buffalo before completing her PhD in applied and computational mathematics at Princeton. She then worked as a National Science Foundation postdoctoral research fellow at New York University, and as an associate research scientist at Columbia University. She became an associate professor of statistics at the Massachusetts Institute of Technology before joining Duke’s faculty in 2017, where she holds appointments in computer science, electrical and computer engineering, biostatistics and bioinformatics, and statistical science.

You can read the AAAI press release here.



tags: ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Competition open for images of “digital transformation at work”

Digit and Better Images of AI have teamed up to launch a competition to create more realistic stock images of "digital transformation at work"
monthly digest

AIhub monthly digest: April 2025 – aligning GenAI with technical standards, ML applied to semiconductor manufacturing, and social choice problems

  30 Apr 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

#ICLR2025 social media round-up

  29 Apr 2025
Find out what participants got up to at the International Conference on Learning Representations.

Copilot Arena: A platform for code

  28 Apr 2025
Copilot Arena is an app designed to evaluate LLMs in real-world settings by collecting preferences directly in a developer’s actual workflow.

Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association