ΑΙhub.org
 

Stanford HAI 2021 fall conference: four radical proposals for a better society


by
11 November 2021



share this:
Stanford HAI conference logo

This year’s Stanford HAI virtual fall conference took place on 9-10 November. It comprised a discussion of four policy proposals that respond to the issues and opportunities created by artificial intelligence. The premise is that each policy proposal poses a challenge to the status quo. These proposals were presented to panels of experts who debated the merits and issues surrounding each policy.

The event was recorded and you can watch both days’ sessions on YouTube. Day one covered proposals 1 and 2, and day two focussed on proposals 3 and 4.

Day one

Proposal 1: Middleware could give consumers choices over what they see online

Middleware is software that rides on top of an existing internet or social media platform such as Google, Facebook or Twitter and can modify the presentation of underlying data. This proposal suggests outsourcing content moderation to a layer of competitive middleware companies that would offer users the ability to tailor their search and social media feeds to suit their personal preferences.

Taking part in this discussion were:
Francis Fukuyama (Freeman Spogli Institute for International Studies)
Ashish Goel (Stanford University)
Kate Starbird (University of Washington)
Katrina Ligett (Hebrew University)
Renee DiResta (Stanford Internet Observatory)

Read more here.

Proposal 2: Universal Basic Income to offset job losses due to automation

The proposal is to give every American adult $1,000 a month to avert an economic crisis.

Taking part in this discussion were:
Andrew Yang (Venture for America)
Darrick Hamilton (The New School Milano)
Mark Duggan (Stanford Institute for Economic Policy Research)
Juliana Bidadanure (Stanford University)

Read more here.

Day two

Proposal 3: Data cooperatives could give us more power over our data

To address the power imbalance between data producers and corporations that profit from our data, scholars propose creating data cooperatives to act as fiduciary intermediaries.

Taking part in this discussion were:
Divya Siddarth (Microsoft)
Pamela Samuelson (UC Berkeley)
Sandy Pentland (MIT)
Jennifer King (Stanford University)

Read more here.

Proposal 4: Third-party auditor access for AI accountability

A proposal for legal protections and regulatory involvement to support organizations that uncover algorithmic harm.

Taking part in this discussion were:
Deborah Raji (UC Berkeley)
DJ Patil (Devoted Health)
Cathy O’Neil (Columbia University)
Fiona Scott Morton (Yale University)

Read more here.

These four proposals were chosen following a public consultation last spring. The organisers received nearly 100 suggestions. In addition to the four discussed at the event, there are six more that the team at Stanford HAI would like to highlight. You can find out more about these here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



A behaviour monitoring dataset of wild mammals in the Swiss Alps

  17 Jul 2025
Scientists at EPFL have created MammAlps, a multi-view, multi-modal video dataset that captures how wild mammals behave in the Swiss Alps.

#ICML2025 social media round-up 1

  16 Jul 2025
Find out what participants have been getting up to during the first couple of days of the conference.

Congratulations to the #ICML2025 award winners!

  16 Jul 2025
Find out which articles have won the outstanding paper, outstanding position paper, and the test-of-time awards.

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

  15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

What’s coming up at #RoboCup2025?

  10 Jul 2025
Find out when the different leagues competitions and the symposium are taking place.

Wildlife researchers train AI to better identify animal species in trail camera photos

  09 Jul 2025
Scientists are working on improving AI performance in wildlife monitoring through species and environment-specific training.

What’s on the programme at #ICML2025?

  07 Jul 2025
Find out what the International Conference on Machine Learning has in store.

Introducing the NASA Onboard Artificial Intelligence Research (OnAIR) platform: an interview with Evana Gizzi

  03 Jul 2025
Find out about the OnAIR platform, some of the particular challenges of deploying AI-based solutions in space, and how the tool has been used so far.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence