ΑΙhub.org
 

Machine learning for climate science and Earth observation – a webinar from Climate Change AI


by
16 November 2021



share this:

earth
The most recent webinar in the Climate Change AI series covered machine learning for climate science and Earth observation. We heard from two experts in the field, and you can watch the recording below. Maike Sonnewald spoke about trustworthy AI for climate analysis, and Gustau Camps-Valls talked about physics-aware machine learning for Earth sciences.

A robust blueprint for trustworthy AI for climate analysis

Maike Sonnewald, Princeton University.

In her presentation, Maike put forward a blueprint for a transparent machine learning application that reveals 3D ocean current structures from surface fields in climate models. She talked about how she applies this to predict ocean current changes. As a result of climate change there is great variability in global heat transport and this application can aid in understanding that variability. The application is designed to be interpretable and explainable so that it can deliver actionable insights in support of climate decision making.

Physics-aware machine learning for Earth sciences

Gustau Camps-Valls, Universitat de València.

When it comes to Earth science problems, it is desirable to build models that are physically interpretable. Machine learning models are excellent approximators, but very often do not have the laws of physics in-built. This means that consistency and trustworthiness can be compromised. In this talk, Gustau reviewed the main challenges in the field of physics-aware machine learning, and introduced several ways to carry out research at the interface of physics and machine learning.

Useful links

Climate Change AI webpage
Events from Climate Change AI
Webinars from Climate Change AI

AIhub focus issue on climate action

tags: , ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.

Why AI can’t take over creative writing

  22 Apr 2025
A large language model tries to generate what a random person who had produced the previous text would produce.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.

Repurposing protein folding models for generation with latent diffusion

  14 Apr 2025
The awarding of the 2024 Nobel Prize to AlphaFold2 marks an important moment of recognition for the of AI role in biology. What comes next after protein folding?




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association