ΑΙhub.org
 

Machine learning for climate science and Earth observation – a webinar from Climate Change AI


by
16 November 2021



share this:

earth
The most recent webinar in the Climate Change AI series covered machine learning for climate science and Earth observation. We heard from two experts in the field, and you can watch the recording below. Maike Sonnewald spoke about trustworthy AI for climate analysis, and Gustau Camps-Valls talked about physics-aware machine learning for Earth sciences.

A robust blueprint for trustworthy AI for climate analysis

Maike Sonnewald, Princeton University.

In her presentation, Maike put forward a blueprint for a transparent machine learning application that reveals 3D ocean current structures from surface fields in climate models. She talked about how she applies this to predict ocean current changes. As a result of climate change there is great variability in global heat transport and this application can aid in understanding that variability. The application is designed to be interpretable and explainable so that it can deliver actionable insights in support of climate decision making.

Physics-aware machine learning for Earth sciences

Gustau Camps-Valls, Universitat de València.

When it comes to Earth science problems, it is desirable to build models that are physically interpretable. Machine learning models are excellent approximators, but very often do not have the laws of physics in-built. This means that consistency and trustworthiness can be compromised. In this talk, Gustau reviewed the main challenges in the field of physics-aware machine learning, and introduced several ways to carry out research at the interface of physics and machine learning.

Useful links

Climate Change AI webpage
Events from Climate Change AI
Webinars from Climate Change AI

AIhub focus issue on climate action

tags: , ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: March 2025 – human-allied AI, differential privacy, and social media microtargeting

  28 Mar 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AI ring tracks spelled words in American Sign Language

  27 Mar 2025
In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling.

How AI images are ‘flattening’ Indigenous cultures – creating a new form of tech colonialism

  26 Mar 2025
AI-generated stock images that claim to depict “Indigenous Australians”, don’t resemble Aboriginal and Torres Strait Islander peoples.

Interview with Lea Demelius: Researching differential privacy

  25 Mar 2025
We hear from doctoral consortium participant Lea Demelius who is investigating the trade-offs and synergies that arise between various requirements for trustworthy AI.

The Machine Ethics podcast: Careful technology with Rachel Coldicutt

This episode, Ben chats to Rachel Coldicutt about AI taxonomy, innovating for everyone not just the few, responsibilities of researchers, and more.

Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association