ΑΙhub.org
 

Machine learning for climate science and Earth observation – a webinar from Climate Change AI


by
16 November 2021



share this:

earth
The most recent webinar in the Climate Change AI series covered machine learning for climate science and Earth observation. We heard from two experts in the field, and you can watch the recording below. Maike Sonnewald spoke about trustworthy AI for climate analysis, and Gustau Camps-Valls talked about physics-aware machine learning for Earth sciences.

A robust blueprint for trustworthy AI for climate analysis

Maike Sonnewald, Princeton University.

In her presentation, Maike put forward a blueprint for a transparent machine learning application that reveals 3D ocean current structures from surface fields in climate models. She talked about how she applies this to predict ocean current changes. As a result of climate change there is great variability in global heat transport and this application can aid in understanding that variability. The application is designed to be interpretable and explainable so that it can deliver actionable insights in support of climate decision making.

Physics-aware machine learning for Earth sciences

Gustau Camps-Valls, Universitat de València.

When it comes to Earth science problems, it is desirable to build models that are physically interpretable. Machine learning models are excellent approximators, but very often do not have the laws of physics in-built. This means that consistency and trustworthiness can be compromised. In this talk, Gustau reviewed the main challenges in the field of physics-aware machine learning, and introduced several ways to carry out research at the interface of physics and machine learning.

Useful links

Climate Change AI webpage
Events from Climate Change AI
Webinars from Climate Change AI

AIhub focus issue on climate action

tags: , ,


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association