ΑΙhub.org
 

Machine learning in chemistry – a symposium


by
23 November 2021



share this:

radial and angular outputImage from TorchANI: A Free and Open Source PyTorch Based Deep Learning Implementation of the ANI Neural Network Potentials, work covered in the first talk by Adrian Roitberg. Reproduced under a CC BY NC ND 4.0 License.

Earlier this month, the Initiative for the Theoretical Sciences, City University of New York (CUNY) organised a symposium on Machine learning in chemistry.

Moderated by Seogjoo Jang (CUNY) and Johannes Hachmann (University at Buffalo, SUNY), the event comprised four talks covering: quantum chemistry, predicting energy gaps, drug discovery, and “teaching” chemistry to deep learning models.

The event was recorded, and you can watch in full below:

The talks


Starts at 1:30

A Star Wars character beats Quantum Chemistry! A neural network accelerating molecular calculations
Adrian Roitberg, University of Florida
Abstract: We will show that a neural network can learn to compute energies and forces for acting on small molecules, from a training set of quantum mechanical calculations. This allows us to perform very accurate calculations at roughly a 107 speedup versus conventional quantum calculations. This opens the door for many possible applications, where the speed versus accuracy bottleneck have made them unfeasible until now.


Starts at 33:40

Machine learning energy gaps of molecules in the condensed phase for linear and nonlinear optical spectroscopy
Christine Isborn, University of California Merced
Abstract: This talk will present our results leveraging the locality of chromophore excitations to develop machine learning models to predict the excited-state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore–environment interaction strengths, we provide strategies for the construction of machine learning models that greatly accelerate the calculation of multidimensional optical spectra from first principles.


Starts at 1:02:41

Accelerated molecular design and synthesis for drug discovery
Connor Coley, Massachusetts Institute of Technology
Abstract: The typical molecular discovery paradigm is an iterative process of designing candidate compounds, synthesizing those compounds, and testing their performance, where each repeat of this cycle can require weeks or months, requires extensive manual effort, and relies on expert intuition. Computational tools from machine learning to laboratory automation have already started to streamline this process and promise to transition molecular discovery from intuition-driven to information-driven. This talk will provide an overview of our efforts to develop “predictive chemistry” tools to accelerate the planning and execution of chemical syntheses, as well as deep generative models that learn to propose new molecular structures that can be validated in the lab.


Starts at 1:36:09

More than mimicry? The challenges of teaching chemistry to deep models
Brett Savoie, Purdue University
Abstract: Deep generative chemical models refer to a family of machine learning architectures that can digest chemical property data and suggest new molecules or materials with targeted properties. These models have generated interest for their potential to predict chemistries based on structure-function design rules learned directly from data. Nevertheless, these models are extremely data hungry and have several common failure mechanisms. In this talk I will summarize contemporary strategies for training these models, discuss where progress has been made, and provide some opinions on where work is still needed.





Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



The Machine Ethics podcast: AI Ethics, Risks and Safety Conference 2025

Listen to a special episode recorded at the AI Ethics, Risks and Safety Conference.

Interview with Aneesh Komanduri: Causality and generative modeling

  31 Jul 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.
monthly digest

AIhub monthly digest: July 2025 – RoboCup round-up, ICML in Vancouver, and leveraging feedback in human-robot interactions

  30 Jul 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Yuki Mitsufuji: Text-to-sound generation

  29 Jul 2025
We hear from Sony AI Lead Research Scientist Yuki Mitsufuji to find out more about his latest research.

Open-source Swiss language model to be released this summer

  29 Jul 2025
This summer, EPFL and ETH Zurich will release a large language model (LLM) developed on public infrastructure.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

  25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

Visualising the digital transformation of work

Does it matter that the existing images of AI and digital technologies are so unrealistic?



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence