ΑΙhub.org
 

#NeurIPS2021 invited talks round-up: part three – the collective intelligence of army ants

by
27 January 2022



share this:
ants walking up a tree

The 35th conference on Neural Information Processing Systems (NeurIPS2021) featured eight invited talks. In the last of our series of round-ups, we give a flavour of the final presentation.

The collective intelligence of army ants, and the robots they inspire

Radhika Nagpal

Radhika’s research focusses on collective intelligence, with the overarching goal being to understand how large groups of individuals, with local interaction rules, can cooperate to achieve globally complex behaviour. These are fascinating systems. Each individual is miniscule compared to the massive phenomena that they create, and, with a limited view of the actions of the rest of the swarm, they achieve striking coordination.

Looking at collective intelligence from an algorithmic point-of-view, the phenomenon emerges from many individuals interacting using simple rules. When run by these large, decentralised groups, these simple rules result in highly intelligent behaviour.

The subject of Radhika’s talk was army ants, a species which spectacularly demonstrate collective intelligence. Without any leader, millions of ants work together to self-assemble nests and build bridge structures using their own bodies.

One particular aspect of study concerned self-assembly of such bridges. Radhika’s research team, which comprised three roboticists and two biologists, found that the ants created bridges adapt to traffic flow and terrain. The ants also disassembled the bridge when the flow of ants had stopped and it wasn’t needed any more.

The team proposed the following simple hypothesis to explain this behaviour using local rules: if an ant is walking along, and experiences congestion (i.e. another ant steps on it), then it becomes stationary and turns into a bridge, allowing other ants to walk over it. Then, if no ants are walking on it any more, it can get up and leave.

These observations, and this hypothesis, led the team to consider two research questions:

  • Could they build a robot swarm with soft robots that can self-assemble amorphous structures, just like the ant bridges?
  • Could they formulate rules which allowed these robots to self-assemble temporary and adaptive bridge structures?

There were two motivations for these questions. Firstly, the goal of moving closer to realising robot swarms that can solve problems in a particular environment. Secondly, the use of a synthetic system to better understand the collective intelligence of army ants.

Screenshot from Radhika's talkScreenshot from Radhika’s talk

Radhika showed a demonstration of the soft robot designed by her group. It has two feet and a soft body, and moves by flipping – one foot remains attached, while the other detaches from the surface and flips to attach in a different place. This allows movement in any orientation. Upon detaching, a foot searches through space to find somewhere to attach. By using grippers on the feet that can hook onto textured surfaces, and having a stretchable Velcro skin, the robots can climb over each other, like the ants. The robot pulses, and uses a vibration sensor, to detect whether it is in contact with another robot. A video demonstration of two robots interacting showed that they have successfully created a system that can recreate the simple hypothesis outlined above.

In order to investigate the high-level properties of army ant bridges, which would require a vast number of robots, the team created a simulation. Modelling the ants to have the same characteristics as their physical robots, they were able to replicate the high level properties of army ant bridges with their hypothesized rules.


You can read the round-ups of the other NeurIPS invited talks at these links:
#NeurIPS2021 invited talks round-up: part one – Duolingo, the banality of scale and estimating the mean
#NeurIPS2021 invited talks round-up: part two – benign overfitting, optimal transport, and human and machine intelligence



tags: ,


Lucy Smith , Managing Editor for AIhub.
Lucy Smith , Managing Editor for AIhub.




            AIhub is supported by:


Related posts :



The Machine Ethics Podcast: featuring Marc Steen

In this episode, Ben chats to Marc Steen about AI as tools, the ethics of business models, writing "Ethics for People Who Work in Tech", and more.
06 June 2023, by

On privacy and personalization in federated learning: a retrospective on the US/UK PETs challenge

Studying the use of differential privacy in personalized, cross-silo federated learning.
05 June 2023, by

VISION AI Open Day: Trustworthy AI

Watch the roundtable discussion on trustworthy AI, with a focus on generative models, from the AI Open Day held in Prague.
02 June 2023, by

PeSTo: an AI tool for predicting protein interactions

The model can predict the binding interfaces of proteins when they bind other proteins, nucleic acids, lipids, ions, and small molecules.
01 June 2023, by

Tetris reveals how people respond to an unfair AI algorithm

An experiment in which two people play a modified version of Tetris revealed that players who get fewer turns perceive the other player as less likeable, regardless of whether a person or an algorithm allocates the turns.
31 May 2023, by

AIhub monthly digest: May 2023 – mitigating biases, ICLR invited talks, and Eurovision fun

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
30 May 2023, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association