ΑΙhub.org
 

Machine learning fine-tunes graphene synthesis


by
08 February 2022



share this:

flash graphene productionRice University chemists are employing machine learning to fine-tune its flash Joule heating process to make graphene. A flash signifies the creation of graphene from waste. (Credit: Jeff Fitlow/Rice University)

By Mike Williams

Rice University scientists are using machine learning techniques to streamline the process of synthesizing graphene from waste through flash Joule heating.

This flash Joule process has expanded beyond making graphene from various carbon sources, to extracting other materials, like metals, from urban waste.

The technique is the same for all of the above: blasting a jolt of high energy through the source material to eliminate all but the desired product. But the details for flashing each feedstock are different.

The researchers describe in Advanced Materials how machine learning models that adapt to variables and show them how to optimize procedures are helping them push forward.

“Machine learning algorithms will be critical to making the flash process rapid and scalable without negatively affecting the graphene product’s properties,” Tour said.

“In the coming years, the flash parameters can vary depending on the feedstock, whether it’s petroleum-based, coal, plastic, household waste or anything else,” he said. “Depending on the type of graphene we want — small flake, large flake, high turbostratic, level of purity — the machine can discern by itself what parameters to change.”

Because flashing makes graphene in hundreds of milliseconds, it’s difficult to tease out the details of the chemical process. So Tour and company took a clue from materials scientists who have worked machine learning into their everyday process of discovery.

flash heating methodMachine learning is fine-tuning Rice University’s flash Joule heating method for making graphene from a variety of carbon sources, including waste materials. (Credit: Jacob Beckham/Tour Group)

“It turned out that machine learning and flash Joule heating had really good synergy,” said Rice graduate student and lead author Jacob Beckham. “Flash Joule heating is a really powerful technique, but it’s difficult to control some of the variables involved, like the rate of current discharge during a reaction. And that’s where machine learning can really shine. It’s a great tool for finding relationships between multiple variables, even when it’s impossible to do a complete search of the parameter space.

“That synergy made it possible to synthesize graphene from scrap material based entirely on the models’ understanding of the Joule heating process,” he said. “All we had to do was carry out the reaction — which can eventually be automated.”

The lab used its custom optimization model to improve graphene crystallization from four starting materials — carbon black, plastic pyrolysis ash, pyrolyzed rubber tires and coke — over 173 trials, using Raman spectroscopy to characterize the starting materials and graphene products.

The researchers then fed more than 20,000 spectroscopy results to the model and asked it to predict which starting materials would provide the best yield of graphene. The model also took the effects of charge density, sample mass and material type into account in their calculations.

Co-authors are Rice graduate students Kevin Wyss, Emily McHugh, Paul Advincula and Weiyin Chen; Rice alumnus John Li; and postdoctoral researcher Yunchao Xie and Jian Lin, an associate professor of mechanical and aerospace engineering, of the University of Missouri. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering.

The Air Force Office of Scientific Research (FA9550-19- 1-0296), U.S. Army Corps of Engineers (W912HZ-21-2-0050) and the Department of Energy (DE- FE0031794) supported the research.




Rice University




            AIhub is supported by:


Related posts :



Making optimal decisions without having all the cards in hand

Read about research which won an outstanding paper award at AAAI 2025.

Exploring counterfactuals in continuous-action reinforcement learning

  20 Jun 2025
Shuyang Dong writes about her work that will be presented at IJCAI 2025.

What is vibe coding? A computer scientist explains what it means to have AI write computer code − and what risks that can entail

  19 Jun 2025
Until recently, most computer code was written, at least originally, by human beings. But with the advent of GenAI, that has begun to change.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

  18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Interview with Mahammed Kamruzzaman: Understanding and mitigating biases in large language models

  17 Jun 2025
Find out how Mahammed is investigating multiple facets of biases in LLMs.

Google’s SynthID is the latest tool for catching AI-made content. What is AI ‘watermarking’ and does it work?

  16 Jun 2025
Last month, Google announced SynthID Detector, a new tool to detect AI-generated content.

The Good Robot podcast: Symbiosis from bacteria to AI with N. Katherine Hayles

  13 Jun 2025
In this episode, Eleanor and Kerry talk to N. Katherine Hayles about her new book, and discuss how the biological concept of symbiosis can inform the relationships we have with AI.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

  12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence