ΑΙhub.org
 

Pieter Abbeel wins ACM Prize in Computing


by
08 April 2022



share this:

Pieter AbbeelPieter Abbeel. Photo courtesy of ACM.

Congratulations to Pieter Abbeel who has been awarded the ACM Prize in Computing for his contribution to robot learning, including learning from demonstrations and deep reinforcement learning for robotic control.

Pieter’s research has covered the following:

  • The development of new apprenticeship learning techniques to significantly improve robotic manipulation.
  • The introduction of new methods to enhance robot visual perception, physics-based tracking, control, and learning from demonstration
  • Development of robots that can perform surgical suturing, detect objects, and plan their trajectories in uncertain situations
  • “Few-shot imitation learning,” where a robot is able to learn to perform a task from just one demonstration after having been pre-trained with a large set of demonstrations on related tasks.
  • Deep reinforcement learning for robotics.
  • The development of a deep reinforcement learning method called Trust Region Policy Optimization. This method stabilizes the reinforcement learning process, enabling robots to learn a range of simulated control skills.

Pieter Abbeel is a Professor of Computer Science and Electrical Engineering at the University of California, Berkeley and the Co-Founder, President and Chief Scientist at Covariant, an AI robotics company. He also hosts the The Robot Brains podcast.

About the ACM Prize in Computing

The ACM Prize in Computing recognizes an early- to mid-career fundamental, innovative contribution in computing that, through its depth, impact and broad implications, exemplifies the greatest achievements in the discipline. The award carries a prize of $250,000.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association