ΑΙhub.org
 

Pieter Abbeel wins ACM Prize in Computing


by
08 April 2022



share this:

Pieter AbbeelPieter Abbeel. Photo courtesy of ACM.

Congratulations to Pieter Abbeel who has been awarded the ACM Prize in Computing for his contribution to robot learning, including learning from demonstrations and deep reinforcement learning for robotic control.

Pieter’s research has covered the following:

  • The development of new apprenticeship learning techniques to significantly improve robotic manipulation.
  • The introduction of new methods to enhance robot visual perception, physics-based tracking, control, and learning from demonstration
  • Development of robots that can perform surgical suturing, detect objects, and plan their trajectories in uncertain situations
  • “Few-shot imitation learning,” where a robot is able to learn to perform a task from just one demonstration after having been pre-trained with a large set of demonstrations on related tasks.
  • Deep reinforcement learning for robotics.
  • The development of a deep reinforcement learning method called Trust Region Policy Optimization. This method stabilizes the reinforcement learning process, enabling robots to learn a range of simulated control skills.

Pieter Abbeel is a Professor of Computer Science and Electrical Engineering at the University of California, Berkeley and the Co-Founder, President and Chief Scientist at Covariant, an AI robotics company. He also hosts the The Robot Brains podcast.

About the ACM Prize in Computing

The ACM Prize in Computing recognizes an early- to mid-career fundamental, innovative contribution in computing that, through its depth, impact and broad implications, exemplifies the greatest achievements in the discipline. The award carries a prize of $250,000.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

The value of prediction in identifying the worst-off: Interview with Unai Fischer Abaigar

  27 Aug 2025
We hear from the winner of an outstanding paper award at ICML2025.

#IJCAI2025 social media round-up: part two

  26 Aug 2025
Find out what the participants got up to during the main part of the conference.

AI helps chemists develop tougher plastics

  25 Aug 2025
Researchers created polymers that are more resistant to tearing by incorporating stress-responsive molecules identified by a machine learning model.

RoboCup@Work League: Interview with Christoph Steup

  22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

  21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

Congratulations to the #IJCAI2025 distinguished paper award winners

  20 Aug 2025
Find out who has won the prestigious awards at the International Joint Conference on Artificial Intelligence.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence