ΑΙhub.org
 

New framework for cooperative bots aims to mimic high-performing human teams

slide showing multiwalker

A Georgia Institute of Technology research group in the School of Interactive Computing has developed a robotics system for collaborative bots that work independently to achieve a shared goal.

The system intelligently increases the information shared among the bots and allows for improved cooperation. The aim is to model high-functioning human teams. It also creates resiliency against bad or unreliable team bots that may hinder the overall programmed goal.

“Intuitively, the idea behind our new framework — InfoPG — is that a robot agent goes back-and-forth on what it thinks it should do with their teammates, and then the teammates will update on what they think is best to do,” said Esmaeil Seraj, Ph.D. student in the CORE Robotics Lab and researcher on the project. “They do this until the decision is deeply rationalized and reasoned about.”

The work focuses on artificial agents on a decentralized team — in simulations or the real world — working in concert toward a specific task. Applications could include surgery, search and rescue, and disaster response, among others.

InfoPG facilitates communication between the artificial agents on an iterative basis and allows for actions and decisions that mimic human teams working at optimal levels.

“This research is in fact inspired by how high-performing human teams act,” said Seraj.

“Humans normally use k-level thinking — such as, ‘what I think you will do, what I think you think I will do, and so on’ — to rationalize their actions in a team,” he said. “The basic thought is that the more you know about your teammate’s strategy, the easier it is for you to take the best action possible.”

Using this approach, the researchers designed InfoPG to make one bot’s decisions conditional on its teammates. They ran simulations using simple games like Pong, and complex games like StarCraft II.

In the latter — where the goal is for one team of agents to defeat another — the InfoPG architecture showed very advanced strategies. Seraj said agents in one case learned to form a triangle formation, sacrificing the front agent while the two other agents eliminated the enemy. Without InfoPG in play, an agent abandoned its team to save itself.

The new method also limits the disruption a bad bot on the team might cause.

“Coordinating actions with such a fraudulent agent in a collaborative multi-agent setting can be detrimental,” said Matthew Gombolay, assistant professor in the School of Interactive Computing and director of the CORE Robotics Lab. “We need to ensure the integrity of robot teams in real-world applications where bots might be tasked to save lives or help people and organizations extend their capabilities.”

Results of the work show InfoPG’s performance exceeds various baselines in learning cooperative policies for multi-agent reinforcement learning. The researchers plan to move the system from simulation into real robots, such as controlling a swarm of drones to help surveil and fight wildfires.

The research is published in the 2022 Proceedings of the International Conference on Learning Representations. The paper, Iterated Reasoning with Mutual Information in Cooperative and Byzantine Decentralized Teaming is co-authored by computer science major Sachin G. Konan, Esmaeil Seraj, and Matthew Gombolay.

This work was sponsored by the Office of Naval Research under grant N00014-19-1-2076 and the Naval Research Lab (NRL) under the grant N00173-20-1-G009. The researchers’ views and statements are based on their findings and do not necessarily reflect those of the funding agencies.




Machine Learning Center at Georgia Tech




            AIhub is supported by:


Related posts :



Call for AI-themed holiday videos, art and more

Send us your AI-generated art, pictures, poems, datasets, music, films...
02 December 2022, by

Estimating manipulation intentions to ease teleoperation

Introducing an intention estimation model that relies on both gaze and motion features.
01 December 2022, by

#NeurIPS2022 outstanding paper – Gradient descent: the ultimate optimizer

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, Erik Meijer, tell us about their work, which won a NeurIPS outstanding paper award.
30 November 2022, by

AIhub monthly digest: November 2022 – musical improvisation, two-player games, and interviews galore

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
29 November 2022, by

Collaboration the key to realising the potential of AI

We are currently far from achieving full autonomy for rescue robotic systems. Consequently, well-functioning collaboration between human and machine is crucial.
28 November 2022, by

Watch the keynotes from the European Big Data Value Forum

The EBDVF event was held on 21-23 November, and you can catch up with the plenary and keynote talks which were recorded.
25 November 2022, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association