ΑΙhub.org
 

Conference on Reinforcement Learning and Decision Making


by
05 July 2022



share this:

The 5th Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) 2022 took place at Brown University from 8-11 June. The programme included invited and contributed talks, workshops, and poster sessions. The goal of RLDM is to provide a platform for communication among all researchers interested in learning and decision making over time to achieve a goal.

Over the last few decades, reinforcement learning and decision making have been the focus of an incredible wealth of research spanning a wide variety of fields including psychology, artificial intelligence, machine learning, operations research, control theory, neuroscience, economics and ethology. The interdisciplinary sharing of ideas has been key to many developments in the field, and the meeting is characterized by the multidisciplinarity of the presenters and attendees.

Michael Littman (one of the conference general chairs) said that the conference had been a great success, both in terms of the organization and the content: “For many of us, it was the first in-person conference since the start of the pandemic. The organizers put a lot of thought into ways of keeping people safe from COVID and it appears to have paid off, with very few attendees testing positive. RLDM is always exciting, in part because of the effort to coordinate between the cognitive/neuroscience researchers studying decision-making in natural systems and the AI/ML researchers looking at decision-making in machines”.

RLDM lecture theatreOne of the speakers at RLDM. Photo credit: Michael J Frank.

Watch the recordings of the talks

The talks from the four days of the conference were recorded, and you can watch them here:
Day 1 | Day 2 | Day 3 | Day 4

The talks are also available split by individual speakers here.

Best paper awards

Two articles received the honour of RLDM 2022 Best Paper Award:

  • Yash Chandak, Scott Niekum, Bruno Castro da Silva, Erik Learned-Miller, Emma Brunskill, Philip S. Thomas, Universal off-policy evaluation.
  • Diksha Gupta, Brian DePasquale, Charles Kopec, Carlos Brod, An explanatory link between history biases and lapses.

Some of the participants shared their experience on Twitter.

The event website is here.




Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



New AI tool helps match enzymes to substrates

  24 Oct 2025
A new machine learning-powered tool can help researchers determine how well an enzyme fits with a desired target.

#AIES2025 social media round-up

  24 Oct 2025
Find out what participants got up to at the Conference on Artificial Intelligence, Ethics, and Society.

Looking ahead to #ECAI2025

  23 Oct 2025
Find out what the programme has in store at the European Conference on AI.

Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.

What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence