ΑΙhub.org
 

Using AlphaFold to find complex protein knots

by
11 August 2022



share this:

complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right)A complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right). Image credit: Maarten Brems.

The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.

The most complex knots as a test for AlphaFold

“We investigated numerically all – that is some 100,000 – predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins”, added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.

Dr Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Dr Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence – and we are fortunate to have an expert like Todd Yeates involved.”

Read the research paper

AlphaFold predicts the most complex protein knot and composite protein knots
Maarten A. Brems, Robert Runkel, Todd O. Yeates, Peter Virnau




Johannes Gutenberg Universität Mainz




            AIhub is supported by:


Related posts :



CLAIRE AQuA: AI for citizens

Watch the recording of the latest CLAIRE All Questions Answered session.
06 September 2024, by

Developing a system for real-time sensing of flooded roads

Research fuses multiple data sources with AI model for enhanced sensing of road conditions.
05 September 2024, by

Forthcoming machine learning and AI seminars: September 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2024.
02 September 2024, by

Causal inference under incentives: an annotated reading list

This annotated reading list is intended to serve as a brief summary of work on causal inference in the presence of strategic agents.
30 August 2024, by

AIhub monthly digest: August 2024 – IJCAI, neural operators, and sequential decision making

Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.
29 August 2024, by

Air pollution in South Africa: affordable new devices use AI to monitor hotspots in real time

Creating a cost-effective air quality monitoring system based on sensors, Internet of Things and AI.
28 August 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association