ΑΙhub.org
 

Using AlphaFold to find complex protein knots

by
11 August 2022



share this:

complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right)A complex protein knot with seven crossings (left) predicted by AlphaFold and a simplified representation (right). Image credit: Maarten Brems.

The question of how the chemical composition of a protein, the amino acid sequence, determines its 3D structure has been one of the biggest challenges in biophysics for more than half a century. This knowledge about the so-called “folding” of proteins is in great demand, as it contributes significantly to the understanding of various diseases and their treatment, among other things. For these reasons, Google’s DeepMind research team has developed AlphaFold, an artificial intelligence that predicts 3D structures.

A team consisting of researchers from Johannes Gutenberg University Mainz (JGU) and the University of California, Los Angeles, has now taken a closer look at these structures and examined them with respect to knots. We know knots primarily from shoelaces and cables, but they also occur on the nanoscale in our cells. Knotted proteins can not only be used to assess the quality of structure predictions but also raise important questions about folding mechanisms and the evolution of proteins.

The most complex knots as a test for AlphaFold

“We investigated numerically all – that is some 100,000 – predictions of AlphaFold for new protein knots,” said Maarten A. Brems, a PhD student in the group of Dr Peter Virnau at Mainz University. The goal was to identify rare, high-quality structures containing complex and previously unknown protein knots to provide a basis for experimental verification of AlphaFold’s predictions. The study not only discovered the most complex knotted protein to date but also the first composite knots in proteins. The latter can be thought of as two separate knots on the same string. “These new discoveries also provide insight into the evolutionary mechanisms behind such rare proteins”, added Robert Runkel, a theoretical physicist also involved in the project. The results of this study were recently published in Protein Science.

Dr Peter Virnau is pleased with the results: “We have already established a collaboration with our colleague Dr Todd Yeates from UCLA to confirm these structures experimentally. This line of research will shape the biophysics community’s view of artificial intelligence – and we are fortunate to have an expert like Todd Yeates involved.”

Read the research paper

AlphaFold predicts the most complex protein knot and composite protein knots
Maarten A. Brems, Robert Runkel, Todd O. Yeates, Peter Virnau




Johannes Gutenberg Universität Mainz




            AIhub is supported by:


Related posts :



Latest AI announcements from the US Government include updated strategic plan

Find out more about the latest initiatives pertaining to responsible AI in the USA.
26 May 2023, by

Interview with Haotian Xue: learning intuitive physics from videos

A framework for learning 3D-grounded visual intuitive physics models from videos of complex scenes.
25 May 2023, by

Using engineered bacteria and AI to sense and record environmental signals

Synthetic biologists engineer bacterial swarm patterns to visibly record environment and use deep learning to decode patterns.

Writing with AI help can shift your opinions

A study investigates whether a language-model-powered writing assistant that generates some opinions more often than others impacts what users write – and what they think.
23 May 2023, by

AI is helping astronomers make new discoveries and learn about the universe faster than ever before

As the technology has become more powerful, AI algorithms have begun helping astronomers tame massive data sets and discover more about the universe.
22 May 2023, by

The Good Robot Podcast: live from the AI Anarchies conference in Berlin

In this episode, hosts Eleanor Drage and Kerry Mackereth chat to Christina Lu and Grace Turtle.
19 May 2023, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association