ΑΙhub.org
 

Interview with Paula Harder: super-resolution climate data with physics-based constraints


by
31 August 2022



share this:
Paula Harder

Paula Harder, and co-authors Qidong Yang, Venkatesh Ramesh, Alex Hernandez-Garcia, Prasanna Sattigeri, Campbell D. Watson, Daniela Szwarcman and David Rolnick, recently wrote a paper on Generating physically-consistent high-resolution climate data with hard-constrained neural networks. In this interview, Paula tells us more about how they developed a method for super-resolution climate data where conservation laws are enforced.

What is the topic of the research in your paper?

Our paper looks at super-resolution for climate data, which is called downscaling. Deep learning has been applied a lot recently in that area, but the neural networks employed tend to violate physical laws, such as mass conservation. In this work, we look at how to change neural super-resolution architectures such that given constraints like conservation laws are enforced.

Could you tell us about the implications of your research and why it is an interesting area for study?

With our new methodology super-resolution can be made feasible for scientific application, where a guarantee for conservation of some quantities is required. For example, if we look at climate model data, often already small violations of mass conservation can lead to huge instabilities when the data is fed back into a model. Our method can also help in many other application domains as well as potentially improve super-resolution in general.

super-resolution dataAn example of spatial super-resolution prediction for different methods. Shown here is the low resolution input, different constrained and unconstrained predictions and the high-resolution image as a reference.

Could you explain your methodology?

Our first methodology is introducing a new layer at the end of a neural network, the constraint or renormalization layer. It is an adaption of a softmax layer, such that quantities between low-resolution input and predicted high-resolution output are conserved and the values are forced to be positive. This layer can then also be applied successively if we increase the resolution by a large factor.

What were your main findings?

Interestingly, we found that the constraining methodology not only gives us a prediction that obeys the physical laws but also has an increased predictive accuracy compared to the same architectures without that layer. This effect showed in all the architectures ranging from CNNs, over GANs to RNNs that also do super-resolution in the time dimension.

What further work are you planning in this area?

So far we only used one data set to develop and test our methodology. We would like to extend the application of our work to new data sets in climate science and other areas as well as to new architectures. We also plan to apply the constraining methodology to other climate model tasks besides downscaling.

About Paula

Paula Harder is an intern at Mila and a Ph.D. student in computer science at the Fraunhofer Institute. Her research focuses on physics-constrained deep learning for climate science, where she worked on emulating an aerosol model as a visiting researcher at the University of Oxford. Besides her work on climate machine learning (ML), she did work on adversarial attack detection and was involved with NASA’s and ESA’s Frontier Development Lab for projects on ML for space and earth science. Paula holds a master’s degree in mathematics from the University of Tübingen and worked in the automotive industry as a development engineer.

Read the research in full

Generating physically-consistent high-resolution climate data with hard-constrained neural networks
Paula Harder, Qidong Yang, Venkatesh Ramesh, Alex Hernandez-Garcia, Prasanna Sattigeri, Campbell D. Watson, Daniela Szwarcman and David Rolnick.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!

#AAAI2025 workshops round-up 1: Artificial intelligence for music, and towards a knowledge-grounded scientific research lifecycle

  18 Mar 2025
We hear from the organisers of two workshops at AAAI2025 and find out the key takeaways from their events.

The Good Robot podcast: Re-imagining voice assistants with Stina Hasse Jørgensen and Frederik Juutilainen

  17 Mar 2025
Eleanor and Kerry chat to Stina Hasse Jørgensen and Frederik Juutilainen about an experimental research project that created an alternative voice assistant.

Visualizing research in the age of AI

  14 Mar 2025
Felice Frankel discusses the implications of generative AI when communicating science visually.

#IJCAI panel on communicating about AI with the public

  13 Mar 2025
A recording of this session at IJCAI2024 is now available to watch.

Interview with Tunazzina Islam: Understand microtargeting and activity patterns on social media

  11 Mar 2025
Hear from Doctoral Consortium participant Tunazzina about her research on computational social science, natural language processing, and social media mining and analysis




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association