ΑΙhub.org
 

GRACE Podcast: Dr Harriett Jernigan interviews Dr Nakeema Stefflbauer

by
06 September 2022



share this:
Grace podcast

GRACE: Global Review of AI Community Ethics is a new student-run, peer-reviewed, open-access, international journal. To accompany the journal, there is a podcast hosted by Dr Harriett Jernigan.

In this second episode, Harriett interviews Dr Nakeema Stefflbauer. Listen below:

Dr Nakeema Stefflbauer is a tech product leader, operator, founder and venture partner with a focus on scalable impact tech and AI-driven businesses that solve real environmental, social and governance problems. She holds MA and PhD degrees from Harvard University, a BA from Brown University, and an executive MBA from the disruptive Quantic School of Business and Technology.

Dr Harriett Jernigan is a lecturer at Stanford University. She earned her BA in German and Creative Writing at the University of Alabama and her PhD in German Studies at Stanford University. She specializes in writing across the disciplines; second-language acquisition; project-based instruction; social geography; and German languages, literatures and cultures.




GRACE




            AIhub is supported by:


Related posts :



UrbanTwin: seeing double for sustainability

A digital twin for urban infrastructure: assessing the effectiveness of climate-related policies and actions.
26 January 2023, by

Counterfactual explanations for land cover mapping: interview with Cassio Dantas

Cassio tells us about work applying counterfactual explanations to remote sensing time series data for land-cover mapping classification.
25 January 2023, by

Bottom-up top-down detection transformers for open vocabulary object detection

We introduce a model that detects all objects that a phrase mentions.
23 January 2023, by

The Good Robot Podcast: featuring Arjun Subramonian

In this episode, Eleanor and Kerry talk to Arjun Subramonian on queer approaches to AI and computing.
20 January 2023, by

Applying AI to pathology reveals insights in endometrial cancer diagnostics

Interpretable deep learning model to predict the molecular classification of endometrial cancer from slide images.
19 January 2023, by





©2021 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association