ΑΙhub.org
 

State of the art in the RoboCup Humanoid League


by and
22 September 2022



share this:

Robots at the humanoid league BangkokHumanoid robots at RoboCup 2022, Bangkok.

RoboCup is an initiative to promote research in robotics through standardized competition and cooperation. The RoboCup Humanoid League focuses on legged robots between 0.4–1 metres tall in the KidSize and 1–2 metres tall in AdultSize.

This year the Hamburg Bit-Bots performed a survey of all KidSize teams participating in the RoboCup 2022 in Bangkok, Thailand. We aimed to capture the state of the art in the league. This article gives a summary of the results. A more technical and detailed writeup can be found on our website.

Before we start we would like to thank all teams that participated for their openness and willingness to share their knowledge with us.

The following sections will describe what teams are using for the various soft- and hardware components required for allowing a humanoid robot to play soccer.

Software

Computer vision

To date, almost all teams use convolutional neural networks for detecting the various objects in the image the robot’s camera captures. These objects not only include the ball but also goalposts, other robots, or line markings. Notably, YOLOv4-tiny is very popular as all computations must be done on the robot itself which is limited in processing capabilities.

Localization

Most teams now use a particle filter (Monte Carlo) localization to estimate the robot’s pose on the playing field. However, the feature used for updating the particle filter varies. Some teams only use the line measurements while others also incorporate the line intersections, goal posts, or field boundary.

Walking

Walking is a challenging problem for humanoids as they are inherently prone to tipping over if no corrective action is applied. The approaches used by teams differ significantly. Several teams use splines to generate walking patterns and stabilize these using sensor measurements such as an inertial measurement unit (IMU) or foot pressure sensors. Other teams use the zero moment point (ZMP) to generate the walk trajectory.

Stand-up motion

In the RoboCup KidSize, the robots must get up after falling. Almost all teams use keyframe animations to perform this motion. The teams expressed annoyance about the manual tuning required to create and adapt these to hardware changes or wear of the robot. The Hamburg Bit-Bots are a notable exception. They use parameterized splines to define this motion. These are also stabilized using the IMU measurements.

Kick motion

Similarly to the stand up motion, the kick is also solved by almost all teams using a keyframe animation. There are two exceptions. Firstly, the Hamburg Bit-Bots use an approach similar to their stand up motion. It also allows defining the kick direction. Another approach developed by the ITAndroids also uses splines for the kick movement but stabilizes the robot using the zero moment point (ZMP).

Decision making

As the robots play autonomously, they must decide which actions to take in which situations. Many teams use state machines to solve this problem. Decision or behaviour trees are also utilized by others. Notably, team Rhoban uses a combination of a state machine and reinforcement learning in their decision making.

Hardware

Materials

Most teams’ robots use aluminium for their mechanical parts. Carbon fibre reinforced polymer (CFRP) and fiberglass are preferred by some for their better strength to weight ratio than aluminium. Some teams choose to use 3D printing for specific parts of the robot as it allows for fast, low-cost development and manufacturing.

Controller board

To allow communication between the main computer and the servo motors and some sensors of the robot a controller board is usually employed. Many teams still use old boards such as the CM730 and CM740 from Robotis as they still own them. Other teams moved to multi-bus structures with custom developed controller boards to allow for faster communication with servos and sensors and therefore faster reaction time.

Camera

Most teams are using a Logitech webcam (C920 and similar ones). Some teams prefer using industrial cameras. These have the advantage that they have a global shutter eliminating rolling shutter and are more sensitive, allowing for a shorter shutter speed, thus reducing the motion blur of the images.

Infrastructure

Programming languages

Most teams use a combination of C++ and Python for programming the robots. C++ lends itself to time critical applications such as a walking algorithm, while Python is often used, for example, in the decision making.

Framework

Seven of the eleven teams use either ROS1 or ROS2 as a framework. This number has increased significantly compared to previous years where many teams built their own framework. This now allows the league to reuse and improve upon software built by other teams more easily.

Operating system

All teams use Linux as the operating system on the robot. Most use Ubuntu either for its compatibility with ROS or since it is easy to set up.



tags: ,


Jasper Güldenstein is a PhD student at University of Hamburg.
Jasper Güldenstein is a PhD student at University of Hamburg.

Marc Bestmann is a PhD student at University of Hamburg.
Marc Bestmann is a PhD student at University of Hamburg.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence