ΑΙhub.org
 

Machine learning predicts heat capacities of metal-organic frameworks


by
28 October 2022



share this:

Metal organic frameworks capturing CO2 from flue gassesMetal organic frameworks capturing CO2 from flue gasses (Credit: S.M. Moosavi)

Metal-organic frameworks (MOFs) are a class of materials that contain nano-sized pores. These pores give MOFs record-breaking internal surface areas, which make them extremely versatile for a number of applications: separating petrochemicals and gases, mimicking DNA, producing hydrogen, and removing heavy metals, fluoride anions, and even gold from water are just a few examples.

MOFs are the focus of Professor Berend Smit’s research at EPFL School of Basic Sciences, where his group employs machine learning in the discovery, design, and even categorization of the ever-increasing MOFs that currently flood chemical databases.

In a new study, Smit and his colleagues have developed a machine-learning model that predicts the heat capacity of MOFs. “This is about very classical thermodynamics,” says Smit. “How much energy is needed to heat up a material by one degree? Until now, all engineering calculations have assumed that all MOFs have the same heat capacity, for the simple reason that there is hardly any data available.” Seyed Mohamad Moosavi, a postdoc at Smit’s group, adds: “If there is no data, how can one make a machine-learning model? That looks impossible!”

The answer is the most innovative aspect of the work: a machine-learning model that predicts how the local chemical environment changes the vibrations of each atom in a MOF molecule. “These vibrations can be related to the heat capacity,” says Smit. “Before, a very expensive quantum calculation would give us a single heat capacity for a single material, but now we get up to 200 data points on these vibrations. So, by doing 200 expensive calculations, we had 40,000 data points to train the model on how these vibrations depend on their chemical environment.”

The researchers then tested their model against experimental data as a real-life check. “The results were surprisingly poor,” says Smit, “until we realized that those experiments had been done with MOFs that had solvent in their pores. So, we re-synthesized some MOFs and carefully removed the synthesis solvent –measured their heat capacity – and the results were in very good agreement with our model’s predictions!”

“Our research showcases how artificial intelligence (AI) can accelerate solving multi-scale problems,” says Moosavi. AI empowers us to think about our problems in a new way and even sometimes tackle them.”

To demonstrate the real-world impact of the work, engineers at Heriot-Watt University simulated the MOFs performance in a carbon capture plant. “We used quantum molecular simulations, machine learning, and chemical engineering in process simulations,” says Smit. “The results showed that with correct heat capacity values of MOFs the overall energy cost of the carbon capture process can be much lower than we originally assumed. Our work is a true multi-scale effort, with a huge impact on the techno-economic viability of currently considered solutions to tackle climate change.”

Other contributors: Freie Universität Berlin, University of Cambridge, Heriot-Watt University, and The University of Manchester.




EPFL




            AIhub is supported by:


Related posts :



Forthcoming machine learning and AI seminars: May 2025 edition

  05 May 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 5 May and 30 June 2025.

Competition open for images of “digital transformation at work”

Digit and Better Images of AI have teamed up to launch a competition to create more realistic stock images of "digital transformation at work"
monthly digest

AIhub monthly digest: April 2025 – aligning GenAI with technical standards, ML applied to semiconductor manufacturing, and social choice problems

  30 Apr 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

#ICLR2025 social media round-up

  29 Apr 2025
Find out what participants got up to at the International Conference on Learning Representations.

Copilot Arena: A platform for code

  28 Apr 2025
Copilot Arena is an app designed to evaluate LLMs in real-world settings by collecting preferences directly in a developer’s actual workflow.

Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence