ΑΙhub.org
 

Machine learning predicts heat capacities of metal-organic frameworks


by
28 October 2022



share this:

Metal organic frameworks capturing CO2 from flue gassesMetal organic frameworks capturing CO2 from flue gasses (Credit: S.M. Moosavi)

Metal-organic frameworks (MOFs) are a class of materials that contain nano-sized pores. These pores give MOFs record-breaking internal surface areas, which make them extremely versatile for a number of applications: separating petrochemicals and gases, mimicking DNA, producing hydrogen, and removing heavy metals, fluoride anions, and even gold from water are just a few examples.

MOFs are the focus of Professor Berend Smit’s research at EPFL School of Basic Sciences, where his group employs machine learning in the discovery, design, and even categorization of the ever-increasing MOFs that currently flood chemical databases.

In a new study, Smit and his colleagues have developed a machine-learning model that predicts the heat capacity of MOFs. “This is about very classical thermodynamics,” says Smit. “How much energy is needed to heat up a material by one degree? Until now, all engineering calculations have assumed that all MOFs have the same heat capacity, for the simple reason that there is hardly any data available.” Seyed Mohamad Moosavi, a postdoc at Smit’s group, adds: “If there is no data, how can one make a machine-learning model? That looks impossible!”

The answer is the most innovative aspect of the work: a machine-learning model that predicts how the local chemical environment changes the vibrations of each atom in a MOF molecule. “These vibrations can be related to the heat capacity,” says Smit. “Before, a very expensive quantum calculation would give us a single heat capacity for a single material, but now we get up to 200 data points on these vibrations. So, by doing 200 expensive calculations, we had 40,000 data points to train the model on how these vibrations depend on their chemical environment.”

The researchers then tested their model against experimental data as a real-life check. “The results were surprisingly poor,” says Smit, “until we realized that those experiments had been done with MOFs that had solvent in their pores. So, we re-synthesized some MOFs and carefully removed the synthesis solvent –measured their heat capacity – and the results were in very good agreement with our model’s predictions!”

“Our research showcases how artificial intelligence (AI) can accelerate solving multi-scale problems,” says Moosavi. AI empowers us to think about our problems in a new way and even sometimes tackle them.”

To demonstrate the real-world impact of the work, engineers at Heriot-Watt University simulated the MOFs performance in a carbon capture plant. “We used quantum molecular simulations, machine learning, and chemical engineering in process simulations,” says Smit. “The results showed that with correct heat capacity values of MOFs the overall energy cost of the carbon capture process can be much lower than we originally assumed. Our work is a true multi-scale effort, with a huge impact on the techno-economic viability of currently considered solutions to tackle climate change.”

Other contributors: Freie Universität Berlin, University of Cambridge, Heriot-Watt University, and The University of Manchester.




EPFL




            AIhub is supported by:


Related posts :



Generative AI is already being used in journalism – here’s how people feel about it

  21 Feb 2025
New report draws on three years of interviews and focus group research into generative AI and journalism

Charlotte Bunne on developing AI-based diagnostic tools

  20 Feb 2025
To advance modern medicine, EPFL researchers are developing AI-based diagnostic tools. Their goal is to predict the best treatment a patient should receive.

What’s coming up at #AAAI2025?

  19 Feb 2025
Find out what's on the programme at the 39th Annual AAAI Conference on Artificial Intelligence

An introduction to science communication at #AAAI2025

  18 Feb 2025
Find out more about our forthcoming training session at AAAI on 26 February 2025.

The Good Robot podcast: Critiquing tech through comedy with Laura Allcorn

  17 Feb 2025
Eleanor and Kerry chat to Laura Allcorn about how she pairs humour and entertainment with participatory public engagement to raise awareness of AI use cases

Interview with Kayla Boggess: Explainable AI for more accessible and understandable technologies

  14 Feb 2025
Hear from Doctoral Consortium participant Kayla about her work focussed on explanations for multi-agent reinforcement learning, and human-centric explanations.

The Machine Ethics podcast: Running faster with Enrico Panai

This episode, Ben chats to Enrico Panai about different aspects of AI ethics.

Diffusion model predicts 3D genomic structures

  12 Feb 2025
A new approach predicts how a specific DNA sequence will arrange itself in the cell nucleus.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association