ΑΙhub.org
 

Using machine learning to improve all-in-one miniature spectrometers


by
31 October 2022



share this:

On-chip spectrometer on a fingertipOn-chip spectrometer on a fingertip. Credit: Suvi-Tuuli Akkanen, Mikko Turunen, Vincent Pelgrin. Aalto University.

An international team of researchers have designed a miniaturised spectrometer with high resolution, employing machine learning methodology as one of their tools. The results are reported in the journal Science.

Traditionally, spectrometers rely on bulky components to filter and disperse light. In addition, these traditional spectrometers are heavy and large, which limits their application in portable and mobile devices. Modern approaches simplify these components to shrink footprints, but tend to suffer from limited resolution and bandwidth.

To tackle these problems, and to shrink the size of the system, researchers have coupled layered materials with machine learning algorithms. The result is an all-in-one spectrometer thousands of times smaller than many current commercial systems. At the same time, it offers performance comparable to benchtop systems. In other words, these new spectrometers will provide portable alternatives to the standard systems.

“We eliminate the need for detector arrays, dispersive components, and filters. It’s an all-in-one, miniaturised device,” said Dr Hoon Hahn Yoon, from Aalto University in Finland, first author of the paper. This spectrometer-on-chip technology is expected to offer high performance and new usability across science and industry.

The detector uses van der Waals heterostructures – a “sandwich” of different ingredients, including graphene, molybdenum disulfide, and tungsten diselenide. Different combinations of material components enable light detection beyond the visible spectrum, as far as the near-infrared region. This means the spectrometer detects more than just colour, enabling applications such as chemical analysis and night vision.

“We detect a continuum spectrum of light, opening a world of possibilities in a myriad of markets,” said Yoon. “Exploring other material combinations could uncover further functionalities, including even broader hyperspectral detection and improved resolution.”

Artificial intelligence is a key aspect of these devices, commonly called “computational” spectrometers. This technology compensates for the inherent noise increase that inevitably occurs when the optical component is wholly removed.

“We were able to use mathematical algorithms to successfully reconstruct the signals and spectra” said lead author Professor Zhipei Sun, also from Aalto University, and a former member of Cambridge’s Department of Engineering. “The current design is just a proof-of-concept. More advanced algorithms, as well as different combinations of materials, could soon provide even better miniaturised spectrometers.”

The detection of light – and the full analysis of spectroscopic information – has applications in sensing, surveillance, smart agriculture, and more. Among the most promising applications for miniaturised spectrometers are chemical and biochemical analysis, thanks to the capabilities of the devices to detect light in the infrared wavelength range.

The new devices could be incorporated into instruments like drones, mobile phones, and lab-on-a-chip platforms. The latter also opens up opportunities in healthcare. In this field, spectrometers and light-detectors are already key components of imaging and diagnostic systems.

“Our miniaturised spectrometers offer high spatial and spectral resolution at the micrometre and nanometre scales, which is particularly exciting for responsive bio-implants and innovative imaging techniques,” said co-author Professor Tawfique Hasan, from the Cambridge Graphene Centre.

The researchers hope their contribution is a stepping stone towards the development of more advanced computational spectrometers.

Read the paper in full

Miniaturized Spectrometers with a Tunable van der Waals Junction
Hoon Hahn Yoon et al.




University of Cambridge




            AIhub is supported by:



Related posts :



Discrete flow matching framework for graph generation

and   17 Sep 2025
Read about work presented at ICML 2025 that disentangles sampling from training.

We risk a deluge of AI-written ‘science’ pushing corporate interests – here’s what to do about it

  16 Sep 2025
A single individual using AI can produce multiple papers that appear valid in a matter of hours.

Deploying agentic AI: what worked, what broke, and what we learned

  15 Sep 2025
AI scientist and researcher Francis Osei investigates what happens when Agentic AI systems are used in real projects, where trust and reproducibility are not optional.

Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence