ΑΙhub.org
 

Predicting properties of complex metamaterials


by
08 November 2022



share this:

two mechanical metamaterialsTwo combinatorial mechanical metamaterials designed in such a way that the letters M and L bulge out in the front when being squeezed between two plates (top and bottom). Designing novel metamaterials such as this can be aided by machine learning. Image: Daan Haver and Yao Du.

Given a 3D piece of origami, can you flatten it without damaging it? Just by looking at the design, the answer is hard to predict, because each and every fold in the design has to be compatible with flattening. This is an example of a combinatorial problem. New research led by the University of Amsterdam Institute of Physics and research institute AMOLF has demonstrated that machine learning algorithms can accurately and efficiently answer these kinds of questions. This is expected to give a boost to the artificial intelligence-assisted design of complex and functional (meta)materials.

Artificial materials

These are engineered materials whose properties are determined by their geometrical structure rather than their chemical composition. A piece of origami is also a type of metamaterial, whose ability to flatten (a physically well-defined property) is determined by how it is folded (its structure), rather than by the type of paper it is made of. More generally, smart design allows us to control precisely where or how a metamaterial will bend, buckle or bulge, which may be used for all sorts of things, from shock absorbers to unfolding solar panels on a satellite in space.

A typical combinatorial metamaterial studied in the lab is built up of two or more types or orientations of building blocks, which deform in distinct ways when a mechanical force is applied. If these building blocks are combined randomly, the material as a whole will usually not buckle under pressure because not all blocks will be able to deform the way they want to; they will jam. Where one building block wishes to bulge outward, its neighbour should be able to squish inward. For the metamaterial to easily buckle, all deformed building blocks need to fit together like a jigsaw puzzle. Just like changing a single fold can make a piece of origami unflattenable, changing a single block can make a “floppy” metamaterial rigid.

Hard to predict

While metamaterials have many potential applications, designing a new one is challenging. Starting with a particular set of building blocks, deducing the overall metamaterial properties for different structures often boils down to trial and error. In this day and age, we do not want to do all of this by hand. However, because the properties of combinatorial metamaterials are so sensitive to changes to individual building blocks, conventional statistical and numerical methods are slow and prone to mistakes.

Instead, the researchers found that machine learning may be the answer: even when given only a relatively small set of examples to learn from, convolutional neural networks are able to accurately predict the metamaterial properties of any configuration of building blocks down to the finest detail.

“This far exceeded our expectations,” says PhD student and first author Ryan van Mastrigt. “The accuracy of the predictions shows us that the neural networks have actually learned the mathematical rules underlying the metamaterial properties, even when we don’t know all the rules ourselves.”

This finding suggests that we can use AI to design new complex metamaterials with useful properties. More broadly, applying neural networks to combinatorial problems allows us to pose many exciting questions. Perhaps they can aid us in solving (combinatorial) problems in other contexts. And conversely, the findings can improve our understanding of neural networks themselves, by for instance demonstrating how the complexity of a neural network relates to the complexity of the problems it can solve.

Read the research in full

Machine Learning of Implicit Combinatorial Rules in Mechanical Metamaterials, Ryan van Mastrigt, Marjolein Dijkstra, Martin van Hecke, and Corentin Coulais.
Phys. Rev. Lett. 129 (2022)198003.




University of Amsterdam




            AIhub is supported by:



Related posts :

Learning to see the physical world: an interview with Jiajun Wu

and   17 Feb 2026
Winner of the 2019 AAAI / ACM SIGAI dissertation award tells us about his current research.

3 Questions: Using AI to help Olympic skaters land a quint

  16 Feb 2026
Researchers are applying AI technologies to help figure skaters improve. They also have thoughts on whether five-rotation jumps are humanly possible.

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.

Governing the rise of interactive AI will require behavioral insights

  10 Feb 2026
Yulu Pi writes about her work that was presented at the conference on AI, ethics and society (AIES 2025).

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence