ΑΙhub.org
 

A survey of mixed-precision neural networks


by
09 November 2022



share this:

Nine small images with schematic representations of differently shaped neural networks, a human hand making a different gesture is placed behind each network.Alexa Steinbrück / Better Images of AI / Licenced by CC-BY 4.0

In their paper Mixed-Precision Neural Networks: A Survey, Mariam Rakka, Mohammed E. Fouda, Pramod Khargonekar and Fadi Kurdahi have reviewed recent frameworks in the literature that address mixed-precision neural network training. Here, they tell us more about mixed-precision neural networks and the main findings from their survey.

Could you tell us about mixed-precision neural networks – what are they and why are they an interesting area for study?

Mixed-precision neural networks are neural networks with varying precision (i.e., bitwidth allocation) across layers, kernels or weights. They are now gaining momentum as the need for energy-efficient and high throughput AI hardware is growing. Binary neural networks are considered the most efficient to be deployed on hardware, however, they exhibit a non-negligible drop in the model accuracy compared to floating-point neural networks which give the best accuracy and worst energy and latency efficiency. Mixed-precision neural networks strike the balance between model accuracy and energy and latency efficiency (e.g., less resource-demanding hardware deployment).

What aspects of mixed-precision neural networks have you covered in your survey?

We summarized most of the recent frameworks in the literature that address mixed-precision neural network training. In particular, we categorized these frameworks according to their optimization technique, thoroughly summarized the methods used and results reported by each, and juxtaposed those frameworks by listing their pros and cons. In addition, we provide recommendations for important future research directions in mixed-precision neural networks.

Could you explain your methodology for conducting the survey?

We conducted a thorough literature review of many of the recent mixed-precision neural network papers in the literature, analyzed these works, and drew insights and came up with comparisons. Unfortunately, the programming codes for algorithms in most of these works are not available. This prevented us from performing an experimental study under the same constraints to have an apples-to-apples comparison. But we tried to be as consistent to the maximal extent and report some comparison tables under a similar setup to find the best frameworks. In addition, we gave some recommendations based on these summary tables and provided some comparisons against binary neural networks which is the golden reference for energy and latency efficiency.

What were your main findings?

The main findings can be summarized in the following points:

  • Mixed-precision neural networks are significant as the path for achieving energy-delay-area efficiency.
  • The optimal mixed-precision deep neural network (DNN) that balances the tradeoff between accuracy and hardware savings is still an unsolved problem.
  • There is a growing need for more dynamic mixed-precision DNNs that can be reconfigured at run-time according to the changing requirements of the running application.
  • The overhead of the algorithm/technique used to assign the mixed precision is of importance too.
  • There is a growing interest in joint optimization approaches where not only the mixed precision problem is tackled, but also pruning and even neural architectural search which leads to achieving the highest energy-delay-area efficiency.

As part of your work you proposed some guidelines for future mixed-precision frameworks. Could you tell us a bit about those recommendations?

We focus on the needs of current systems when it comes to neural networks. We recommend that future works in mixed-precision neural networks focus on hardware-awareness, the trade-off between model compression and accuracy, run-time speed of the algorithms, and the support for run-time reconfigurability to adapt to changing run-time system requirements.

What are your plans for future work in this area?

Our background is more towards hardware. Hence, we are currently working to better evolve the hardware models, architecture, and DNN model mapping in the optimization process to achieve better energy, latency, and area efficiency. In addition, we consider the in-memory compute paradigm which by default provides orders of magnitude efficiency compared to the von Neumann computing paradigm which is considered in most of the surveyed mixed precision works.

Read the work in full

Mixed-Precision Neural Networks: A Survey, Mariam Rakka, Mohammed E. Fouda, Pramod Khargonekar, Fadi Kurdahi.

About the authors

Mariam Rakka received a BE degree (with high distinction) in Computer and Communications Engineering with two minors in Mathematics and Business Administration from the American University of Beirut in 2020 and an MEng degree in Electrical and Computer Engineering from UC, Irvine in 2022. Currently, Mariam is a PhD student at UC, Irvine. Her research focuses on in-memory computing technologies, hardware accelerators, rare fail event estimation, and hardware-friendly neural networks. She was a DAC’21 young fellow. Mariam joined Arm for her summer 2022 internship.

Mohammed E. Fouda received a BSc degree (Hons.) in Electronics and Communications Engineering and a MSc degree in Engineering Mathematics from the Faculty of Engineering, Cairo University, Cairo, Egypt, in 2011 and 2014, respectively. Fouda received a PhD degree from the University of California, Irvine, USA, in 2020. From April 2020 – March 2022, he worked as an assistant researcher at the University of California, Irvine. Currently, he is a senior research scientist at Rain Neuromorphics Inc. His research interests include analog AI hardware, neuromorphic circuits and systems, and brain-inspired computing.

Pramod Khargonekar received a BTech degree in electrical engineering in 1977 from IIT Bombay, a MS degree in mathematics in 1980, and PhD degree in electrical engineering in 1981, from the University of Florida. His early career was at the University of Florida and the University of Minnesota. In June 2016, he assumed his current position as Vice Chancellor for Research and Distinguished Professor of Electrical Engineering and Computer Science at the University of California, Irvine. He is a Fellow of IEEE, IFAC, and AAAS. His research interests include control systems theory and applications, machine learning for control, and renewable integration in smart electric grids.

Fadi Kurdahi received a BE degree in electrical engineering from the American University of Beirut in 1981 and a PhD from the University of Southern California in 1987. Since then, he has been a Faculty with the Electrical Engineering and Computer Science Department, University of California at Irvine, and is currently the Director of the Center for Embedded & Cyber-physical Systems, He is a fellow of the IEEE and the AAAS. He received the Distinguished Alumnus Award from his Alma Mater, the American University of Beirut, in 2008.




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence