ΑΙhub.org
 

Learning to efficiently plan robust frictional multi-object grasps: interview with Wisdom Agboh


by
18 November 2022



share this:
Wisdom

In their paper, Learning to Efficiently Plan Robust Frictional Multi-Object Grasps, Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg trained a neural network to plan robust multi-object grasps. Wisdom summarises the key aspects of the work below:

What is the topic of the research in your paper?

When skilled waiters clear tables, they grasp multiple utensils and dishes in a single motion. On the other hand, robots in warehouses are inefficient and can only pick a single object at a time. This research leverages neural networks and fundamental robot grasping theorems to build an efficient robot system that grasps multiple objects at once.

Could you tell us about the implications of your research and why it is an interesting area for study?

To quickly deliver your online orders, amidst increasing demand and labour shortages, fast and efficient robot picking systems in warehouses have become indispensable. This research studies the fundamentals of multi-object robot grasping. It is easy for humans, yet extremely challenging for robots.

Robot arms grasping objectsThe decluttering problem (top) where objects must be transported to a packing box. Wisdom and colleagues found robust frictional multi-object grasps (bottom) to efficiently declutter the scene.

Could you explain your methodology?

We leverage a novel frictional multi-object grasping necessary condition to train MOG-Net, a neural network model using real examples. It predicts the number of objects grasped by a robot out of a target object group. We use MOG-Net in a novel robot grasp planner to quickly generate robust multi-object grasps.

In this video, you can see the robot grasping, using MOG-Net, in action.

What were your main findings?

In physical robot experiments, we found that MOG-Net is 220% faster and 16% more successful, compared to a single object picking system.

What further work are you planning in this area?

Can robots clear your breakfast table by grasping multiple dishes and utensils at once? Can they tidy your room floor by picking up multiple clothes at once? These are the exciting future research directions we will explore.

About Wisdom

Wisdom

Wisdom Agboh is a Research Fellow at the University of Leeds, and a Visiting Scholar at the University of California, Berkeley. He is an award-winning AI and robotics expert.

Read the research in full

Learning to Efficiently Plan Robust Frictional Multi-Object Grasps
Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.

Why AI can’t take over creative writing

  22 Apr 2025
A large language model tries to generate what a random person who had produced the previous text would produce.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association