ΑΙhub.org
 

Learning to efficiently plan robust frictional multi-object grasps: interview with Wisdom Agboh


by
18 November 2022



share this:
Wisdom

In their paper, Learning to Efficiently Plan Robust Frictional Multi-Object Grasps, Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg trained a neural network to plan robust multi-object grasps. Wisdom summarises the key aspects of the work below:

What is the topic of the research in your paper?

When skilled waiters clear tables, they grasp multiple utensils and dishes in a single motion. On the other hand, robots in warehouses are inefficient and can only pick a single object at a time. This research leverages neural networks and fundamental robot grasping theorems to build an efficient robot system that grasps multiple objects at once.

Could you tell us about the implications of your research and why it is an interesting area for study?

To quickly deliver your online orders, amidst increasing demand and labour shortages, fast and efficient robot picking systems in warehouses have become indispensable. This research studies the fundamentals of multi-object robot grasping. It is easy for humans, yet extremely challenging for robots.

Robot arms grasping objectsThe decluttering problem (top) where objects must be transported to a packing box. Wisdom and colleagues found robust frictional multi-object grasps (bottom) to efficiently declutter the scene.

Could you explain your methodology?

We leverage a novel frictional multi-object grasping necessary condition to train MOG-Net, a neural network model using real examples. It predicts the number of objects grasped by a robot out of a target object group. We use MOG-Net in a novel robot grasp planner to quickly generate robust multi-object grasps.

In this video, you can see the robot grasping, using MOG-Net, in action.

What were your main findings?

In physical robot experiments, we found that MOG-Net is 220% faster and 16% more successful, compared to a single object picking system.

What further work are you planning in this area?

Can robots clear your breakfast table by grasping multiple dishes and utensils at once? Can they tidy your room floor by picking up multiple clothes at once? These are the exciting future research directions we will explore.

About Wisdom

Wisdom

Wisdom Agboh is a Research Fellow at the University of Leeds, and a Visiting Scholar at the University of California, Berkeley. He is an award-winning AI and robotics expert.

Read the research in full

Learning to Efficiently Plan Robust Frictional Multi-Object Grasps
Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:



Related posts :



Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.

2025 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  18 Dec 2025
We collate our interviews with the 2025 cohort of doctoral consortium participants.

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

  17 Dec 2025
In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started celebrating their work as “human-made”.

AIhub blog post highlights 2025

  16 Dec 2025
As the year draws to a close, we take a look back at some of our favourite blog posts.

Using machine learning to track greenhouse gas emissions

  15 Dec 2025
PhD candidate Julia Wąsala searches for greenhouse gas emissions in satellite data.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence