ΑΙhub.org
 

Learning to efficiently plan robust frictional multi-object grasps: interview with Wisdom Agboh

by
18 November 2022



share this:
Wisdom

In their paper, Learning to Efficiently Plan Robust Frictional Multi-Object Grasps, Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg trained a neural network to plan robust multi-object grasps. Wisdom summarises the key aspects of the work below:

What is the topic of the research in your paper?

When skilled waiters clear tables, they grasp multiple utensils and dishes in a single motion. On the other hand, robots in warehouses are inefficient and can only pick a single object at a time. This research leverages neural networks and fundamental robot grasping theorems to build an efficient robot system that grasps multiple objects at once.

Could you tell us about the implications of your research and why it is an interesting area for study?

To quickly deliver your online orders, amidst increasing demand and labour shortages, fast and efficient robot picking systems in warehouses have become indispensable. This research studies the fundamentals of multi-object robot grasping. It is easy for humans, yet extremely challenging for robots.

Robot arms grasping objectsThe decluttering problem (top) where objects must be transported to a packing box. Wisdom and colleagues found robust frictional multi-object grasps (bottom) to efficiently declutter the scene.

Could you explain your methodology?

We leverage a novel frictional multi-object grasping necessary condition to train MOG-Net, a neural network model using real examples. It predicts the number of objects grasped by a robot out of a target object group. We use MOG-Net in a novel robot grasp planner to quickly generate robust multi-object grasps.

In this video, you can see the robot grasping, using MOG-Net, in action.

What were your main findings?

In physical robot experiments, we found that MOG-Net is 220% faster and 16% more successful, compared to a single object picking system.

What further work are you planning in this area?

Can robots clear your breakfast table by grasping multiple dishes and utensils at once? Can they tidy your room floor by picking up multiple clothes at once? These are the exciting future research directions we will explore.

About Wisdom

Wisdom

Wisdom Agboh is a Research Fellow at the University of Leeds, and a Visiting Scholar at the University of California, Berkeley. He is an award-winning AI and robotics expert.

Read the research in full

Learning to Efficiently Plan Robust Frictional Multi-Object Grasps
Wisdom C. Agboh, Satvik Sharma, Kishore Srinivas, Mallika Parulekar, Gaurav Datta, Tianshuang Qiu, Jeffrey Ichnowski, Eugen Solowjow, Mehmet Dogar and Ken Goldberg




AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



Training AI requires more data than we have — generating synthetic data could help solve this challenge

The rapid rise of generative AI has brought advancements, but it also presents significant risks.
26 July 2024, by

Congratulations to the #ICML2024 award winners

Find out who won the Test of Time award, and the Best Paper award at ICML this year.
25 July 2024, by

#ICML2024 – tweet round-up from the first few days

We take a look at what participants have been getting up to at the International Conference on Machine Learning.
24 July 2024, by

International collaboration lays the foundation for future AI for materials

Presenting an extended version of the Open databases integration for materials design (OPTIMADE) standard.
23 July 2024, by

#RoboCup2024 – daily digest: 21 July

In the last of our digests, we report on the closing day of competitions in Eindhoven.
21 July 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association