ΑΙhub.org
 

Applying AI to pathology reveals insights in endometrial cancer diagnostics


by
19 January 2023



share this:

Sarah FremondSarah Fremond

Research at the Leiden University Medical Center (LUMC) Department of Pathology shows the power of artificial intelligence (AI) applied to endometrial carcinoma microscopy images. The group of Dr Tjalling Bosse offers insights that could improve diagnosis and treatment of uterine cancer. Their findings have been published in The Lancet Digital Health.

Endometrial carcinoma is the most common cancer of the gynaecologic tract. At the LUMC both clinical trials and translational research is conducted to improve the care for these patients. In the past years, the LUMC has played a leading role in the development of a novel tumour classification system based on molecular alterations, resulting in four endometrial cancer subtypes. Would it be possible to predict these molecular classes, based on microscopy-images alone?

Thousands of images

Bosse and colleagues applied artificial intelligence on microscopy images of thousands of endometrial carcinoma images from patients that participated in the study. His team developed a model that robustly predicts the four molecular classes of endometrial carcinomas based on one haematoxylin and eosin-stained microscopy slide image, which is the standard histological stain used in diagnostics for assessment of tumour grading and histological subtyping. Through reverse-engineering the researchers were able to show which image-features were relevant for the model’s predictions. The model provided the team with important insights that could be utilized in future studies to further improve diagnostics, prognostication, and management of endometrial cancer patients.

Emerging application of AI

“The application of AI in pathology is emerging. In this project we studied the morphology of tumours that shared the same molecular alteration to better understand the effect these changes have on the appearance of the tumour. With this work, the computer model has directed us to areas in- and outside the tumour that are important,” Bosse notes.

“In cancer diagnostics, the number of variables (molecular, tumour morphology, patient data) has increased exponentially and has complexified patient prognosis prediction. Through training unbiased AI models, AI predictions can also teach pathologists in return by, for instance, identifying novel morphological details on microscopy slide images with prognostic value,” says Sarah Fremond.

Read the research in full

Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts
Sarah Fremond, Sonali Andani, Jurriaan Barkey Wolf, Jouke Dijkstra, Sinéad Melsbach, Jan J Jobsen, Mariel Brinkhuis, Suzan Roothaan, Ina Jurgenliemk-Schulz, Ludy C H W Lutgens, Remi A Nout, Elzbieta M van der Steen-Banasik, Stephanie M de Boer, Melanie E Powell, Naveena Singh, Linda R Mileshkin, Helen J Mackay, Alexandra Leary, Hans W Nijman, Vincent T H B M Smit, Carien L Creutzberg, Nanda Horeweg, Viktor H Koelzer, Tjalling Boss.



tags: ,


Universiteit Leiden




            AIhub is supported by:



Related posts :

monthly digest

AIhub monthly digest: January 2026 – moderating guardrails, humanoid soccer, and attending AAAI

  30 Jan 2026
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

The Machine Ethics podcast: 2025 wrap up with Lisa Talia Moretti & Ben Byford

Lisa and Ben chat about the prevalence of AI slop, the end of social media, Grok and explicit content generation, giving legislation more teeth, anthropomorphising reasoning models, and more.

Interview with Kate Larson: Talking multi-agent systems and collective decision-making

  27 Jan 2026
AIhub ambassador Liliane-Caroline Demers caught up with Kate Larson at IJCAI 2025 to find out more about her research.

#AAAI2026 social media round up: part 1

  23 Jan 2026
Find out what participants have been getting up to during the first few of days at the conference

Congratulations to the #AAAI2026 outstanding paper award winners

  22 Jan 2026
Find out who has won these prestigious awards at AAAI this year.

3 Questions: How AI could optimize the power grid

  21 Jan 2026
While the growing energy demands of AI are worrying, some techniques can also help make power grids cleaner and more efficient.

Interview with Xiang Fang: Multi-modal learning and embodied intelligence

  20 Jan 2026
In the first of our new series of interviews featuring the AAAI Doctoral Consortium participants, we hear from Xiang Fang.

An introduction to science communication at #AAAI2026

  19 Jan 2026
Find out more about our session on Wednesday 21 January.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence