ΑΙhub.org
 

Improving the understanding of metal-organic frameworks


by
15 March 2023



share this:

Scanning electron microscope image of MOF crystalsScanning electron microscope image of MOF crystals. Image credit: CSIRO. Reproduced under a CC BY 3.0 licence.

By Nik Papageorgiou

How does an iPhone predict the next word you’re going to type in your messages? The technology behind this, and also at the core of many AI applications, is called a transformer; a deep-learning model that handles sequences of data in parallel, and can be fine-tuned for specific tasks.

Now, researchers at EPFL and KAIST have created a transformer for Metal-Organic Frameworks (MOFs), a class of porous crystalline materials whose potential applications include energy storage and gas separation. MOFs are composed of thousands of tunable molecular building blocks (metal nodes and organic linkers), and, considering all possible configurations, a vast number of MOFs could potentially be synthesised. Given this vast space, it is a challenge to find the material that has the characteristics you are looking for. One option is to use machine learning techniques to search the property-structure space.

The “MOFtransformer” developed by the researchers is based on the transformer architecture that forms the core of popular language models such as GPT-3, the predecessor to ChatGPT. The central idea behind these models is that they are pre-trained on a large amount of text, so when we start typing on an iPhone, for example, models like this autocomplete the most likely next word.

“We wanted to explore this idea for MOFs, but instead of giving a word suggestion, we wanted to have it suggest a property,” says Professor Berend Smit, who led the EPFL side of the project. “We pre-trained the MOFTransformer with a million hypothetical MOFs to learn their essential characteristics, which we represented as a sentence. The model was then trained to complete these sentences to give the MOF’s correct characteristics.”

The researchers then fine-tuned the MOFTransformer for tasks related to hydrogen storage, such as the storage capacity of hydrogen, its diffusion coefficient, and the band gap of the MOF (an “energy barrier” that determines how electrons can move through a material).

The approach showed that the MOFTransformer could get results using far less data compared to conventional machine-learning methods, which require much more data. “Because of the pre-training, the MOFTtransformer knows already many of the general properties of MOFs; and because of this knowledge, we need less data to train for another property,” says Smit. Moreover, the same model could be used for all properties, while in conventional machine learning, a separate model must be developed for each application.

The researchers hope that the MOFTransformer will pave the way for the development of new MOFs with improved properties for hydrogen storage and other applications.


The MOFTransformer library is available here.

Read the article: A Multi-modal Pre-training Transformer for Universal Transfer Learning in Metal-Organic Frameworks.




EPFL




            AIhub is supported by:



Related posts :



The great wildebeest migration, seen from space: satellites and AI are helping count Africa’s wildlife

  27 Oct 2025
Researchers analysed satellite imagery of the Serengeti-Mara ecosystem from 2022 and 2023.

New AI tool helps match enzymes to substrates

  24 Oct 2025
A new machine learning-powered tool can help researchers determine how well an enzyme fits with a desired target.

#AIES2025 social media round-up

  24 Oct 2025
Find out what participants got up to at the Conference on Artificial Intelligence, Ethics, and Society.

Looking ahead to #ECAI2025

  23 Oct 2025
Find out what the programme has in store at the European Conference on AI.

Congratulations to the #AIES2025 best paper award winners!

  21 Oct 2025
The four winners of best paper prizes were announced during the opening ceremony at AIES.

From the telegraph to AI, our communications systems have always had hidden environmental costs

  20 Oct 2025
Drawing parallels between new technologies of the past and today.

What’s on the programme at #AIES2025?

  17 Oct 2025
The conference on AI, ethics, and society will take place in Madrid from 20-22 October.

Generative AI model maps how a new antibiotic targets gut bacteria

  16 Oct 2025
Researchers used a GenAI model to reveal how a narrow-spectrum antibiotic attacks disease-causing bacteria.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence