ΑΙhub.org
 

#AAAI2023 workshops round-up 2: health intelligence and privacy-preserving AI


by
21 March 2023



share this:
AAAI banner, with Washington DC view and AAAI23 text

As part of the 37th AAAI Conference on Artificial Intelligence (AAAI2023), 32 different workshops were held, covering a wide range of different AI topics. We continue our round-up of these workshops with summaries from the organisers of two of the workshops, who tell us their key takeaways from their respective events.


Health Intelligence (W3PHIAI)

Organisers: Arash Shaban-Nejad, Martin Michalowski, Simone Bianco, Szymon Wilk, David L. Buckeridge, John S. Brownstein.

This workshop included contributions spanning theory, methods and systems, for application to web-based healthcare, with a focus on applications in population and personalized health. The main takeaways from the workshop were as follows:

  • Explainability in AI-based health applications is gaining traction. While advances have been made methodologically to improve diagnosis, prognosis, and treatment, there is a need to explain decisions being made in the context of care. Several interesting statistical, textual, and visual methods were presented with compelling applications to health.
  • The identification of biomarkers to describe, define, and predict biological age is a very active topic of research. Aging affects organisms differently, and chronological age does not always coincide with biological age. As part of the workshop’s hackathon dedicated to this problem, very novel ideas were presented on how to use multimodal health data to predict biological age.
  • The set of papers presented at the workshop spanned a range of topics. Past workshops were more heavily focused on deep learning methods. This iteration of the workshop saw a more diverse set of research presented on topics including natural language processing, explainability, classification, fairness/ethics, amongst others.

Privacy Preserving AI (PPAI)

Organisers: Ferdinando Fioretto, Catuscia Palamidessi, Pascal Van Hentenryck.

This workshop focussed on both the theoretical and practical challenges related to the design of privacy-preserving AI systems, including multidisciplinary components, such as policy, legal issues, and societal impact of privacy in AI. The three main takeaways from the event were:

  • Privacy and policy in AI applications
    During the workshop, the invited talk by Kobbi Nissim, a renowned privacy expert, provided valuable insights into the compliance of machine learning (ML) systems with existing privacy legal requirements. The discussion revolved around the need for collaborations between AI practitioners, privacy experts, and policy makers. Participants also debated the effectiveness of current privacy-preserving techniques in meeting legal requirements and the potential consequences of non-compliance.
  • Differential privacy for data release tasks
    The workshop also included a comprehensive discussion on the role of differential privacy in data release tasks. The value of synthetic dataset generators was a major topic, as these generators can create datasets that maintain the statistical properties of the original data while ensuring privacy. Further, a need of comparing traditional data anonymization techniques, such as k-anonymity and cell suppression with differentially private algorithms.
  • Challenges in auditing differential privacy ML models
    Another key discussion point during the workshop was the challenges faced when auditing differential privacy ML models. The discussion emphasized the difficulties in verifying the privacy guarantees of differential privacy models and the potential trade-offs between privacy and model performance. A discussion around the need for standardized metrics, tools, and methodologies to assess the privacy-preserving properties of AI models was also underscored.

You can read the first round up in our series of AAAI workshop summaries here.



tags: ,


AIhub is dedicated to free high-quality information about AI.
AIhub is dedicated to free high-quality information about AI.




            AIhub is supported by:


Related posts :



#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

#AAAI2025 workshops round-up 3: Neural reasoning and mathematical discovery, and AI to accelerate science and engineering

  19 May 2025
We find out about three more of the workshops that took place at AAAI 2025.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

AI Song Contest returns for 2025

  15 May 2025
This year's competition will culminate in a live award show in November.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence