ΑΙhub.org
 

AI in health care challenges us to define what better, people-centred care looks like


by
24 April 2023



share this:

cartoon of a doctor stood next to a large mobile phone
By Catherine Burns

From faster and more accurate disease diagnosis to models of using health care resources more efficiently, AI promises a new frontier of effective and efficient health care. If it’s done right, AI may allow for more people-centred care and for clinicians to spend more time with people, doing the work they enjoy most. But to achieve these aspirations, foundational work must occur in how we operate today and in defining what health care looks like in the future.

AI technologies are only as reliable as the data that drives them. To unlock the power of AI, it requires us to become better at sharing health data between primary care providers, specialists, hospitals, research universities, health companies and patients to develop reliable and accurate models. Without this data, AI technologies may make mistakes, generate inappropriate solutions and encourage inappropriate trust in their answers.

Our health data will also need to be better quality. Issues with noisy sensors, incomplete documentation and different data types must be solved. Health data will have to travel across individual health journeys through multiple providers to avoid reaching solutions that are limited in time and context. In some cases, AI solutions are being developed from clinical trial data. Clinical trial data sets are well known to exclude participants of certain ages, demographics or with multiple morbidities.

Our community and small hospitals can be a solution to this, and they need a louder voice in the health care conversation. More Canadians visit community hospitals than academic hospitals, so their data and experience must be part of the solution. Our small hospitals provide many services to our remote and often underserved communities. For this reason, the voices of those working in our remote communities are critically important at this time, where they are overworked and under-resourced. AI must be designed with a goal of promoting greater access and equity in health care. This means AI must be designed to support equity, be broadly inclusive and be designed to partner with our communities.

We need to understand what it means to have successful health care. Without understanding what a high-performance health-care system looks like, technologies will not be developed to align for effective solutions. We must define the right metrics to get the right results. Do we want to reduce the cost of surgery? Or do we want to reduce the likelihood of follow-up surgery years later? Those goals may have different solutions.

Similarly, do we believe strongly in growing towards a coordinated and shared health care vision? If we do, and I hope we do, AI must be people-centred and designed from an interprofessional lens. It means we must learn and teach each other more about practices of care, outcomes, technology, decision-making and quality of life.

AI learns from our data, so we must provide the proper foundation. Our next generation of AI designers will design their technologies for the problems we tell them are important. We need to define what those problems are and what success would mean.

Catherine Burns

Catherine Burns is the Chair in Human Factors in Health Care Systems and leads the University of Waterloo’s health initiatives. She is a professor in the Faculty of Engineering and an expert in human-centred approaches to the design and implementation of advanced health-care technologies.



tags: ,


University of Waterloo




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence