ΑΙhub.org
 

PeSTo: an AI tool for predicting protein interactions


by
01 June 2023



share this:

two protein simulated imagesThe geometric deep-learning method (PeSTo) used to predict protein binding interfaces. The amino acids involved in the protein binding interface are highlighted in red. Credit: Lucien Krapp (EPFL).

By Nik Papageorgiou

Proteins are essential to the biological functions of most living organisms. They have evolved to interact with other proteins, nucleic acids, lipids etc., and all of those interactions form large, “supra-molecular” complexes. This means that understanding protein interactions is crucial for understanding many cellular processes.

In a big step forward, scientists in the group of Matteo Dal Peraro at EPFL have developed a new tool called PeSTo (short for Protein Structure Transformer) that can predict the specific regions on the surface of a protein that can interact with other proteins, nucleic acids, lipids, ions, and small molecules. These interfaces are crucial for the formation of supramolecular complexes and function modulation.

PeSTo is built on a neural network based on transformer technology. In the context of machine learning, a transformer is a type of neural network designed to process sequential data, such as natural language by using self-attention mechanisms to weigh the importance of different parts of the input sequence and make predictions. Transformers are now at the core of many modern AI tools.

How does PeSTo work?

“The model evaluates the chemical and physical context of each atom by examining all nearby atoms,” says Lucien Krapp, the main developer of PeSTo. “Using the self-attention mechanism, it focuses on significant atoms and interactions within the protein structure. It means that this method effectively captures the complex interactions within protein structures to enable an accurate prediction of protein binding interfaces”.

Because PeSTo’s predictions are based solely on the position in space and the type of atoms, it can make predictions without needing to describe the physics and chemistry of the protein interface using additional external methods. This eliminates the ‘overhead’ of pre-computing molecular surfaces and additional properties, making it much faster, robust and more general than current methods.

It also means that PeSTo can run fast enough to process large volumes of protein structure data, e.g. ensembles from molecular dynamics simulations or entire foldomes. Ultimately, this enables faster discovery of interfaces that go unseen in conventional static structures resolved experimentally.

PeSTo outperforms other methods for predicting protein interaction interfaces and can predict interactions with nucleic acids, lipids, ligands, ions, and small molecules with high confidence. The model’s low computational cost makes it a valuable tool for the scientific community.

PeSTo applied to the human foldome

The researchers unleashed PeSTo on the human foldome, a growing database of predicted protein structures. They analyzed the interactions that human proteins have with other molecules, and produced detailed information about the human “interfaceome” – the sum total of all protein interacting interfaces in the human body. To do this, the researchers used the AlphaFold European Bioinformatics Institute (AF-EBI) database.

The researchers have made PeSTo available in a user-friendly web server, free of charge and prior registration. The server can take any protein structure in PDB format. The predicted interfaces can be visualized directly in the browser with additional information on the confidence of the prediction on a per-residue basis.

Publishing in Nature Communications, the scientists highlight numerous advantages of PeSTo over older methods, particularly that it can work with all kinds of molecules without needing to know all the details about their chemistry and physics. This makes PeSTo a more flexible, powerful and general tool for studying molecular systems and their interactions.

Read the research in full

PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces, Lucien F. Krapp, Luciano A. Abriata, Fabio Cortés Rodriguez, Matteo Dal Peraro, Nature Communications (2023).




EPFL




            AIhub is supported by:



Related posts :



monthly digest

AIhub monthly digest: December 2025 – studying bias in AI-based recruitment tools, an image dataset for ethical AI benchmarking, and end of year com

  29 Dec 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Half of UK novelists believe AI is likely to replace their work entirely

  24 Dec 2025
A new report asks literary creatives about their views on generative AI tools and LLM-authored books.

RL without TD learning

  23 Dec 2025
This post introduces a reinforcement learning algorithm based on a divide and conquer paradigm.

AIhub interview highlights 2025

  22 Dec 2025
Join us for a look back at some of the interviews we've conducted with members of the AI community.

Identifying patterns in insect scents using machine learning

  19 Dec 2025
Scientists will use machine learning to predict what types of molecules interact with insect olfactory receptors.

2025 AAAI / ACM SIGAI Doctoral Consortium interviews compilation

  18 Dec 2025
We collate our interviews with the 2025 cohort of doctoral consortium participants.

A backlash against AI imagery in ads may have begun as brands promote ‘human-made’

  17 Dec 2025
In a wave of new ads, brands like Heineken, Polaroid and Cadbury have started celebrating their work as “human-made”.

AIhub blog post highlights 2025

  16 Dec 2025
As the year draws to a close, we take a look back at some of our favourite blog posts.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence