ΑΙhub.org
 

PeSTo: an AI tool for predicting protein interactions


by
01 June 2023



share this:

two protein simulated imagesThe geometric deep-learning method (PeSTo) used to predict protein binding interfaces. The amino acids involved in the protein binding interface are highlighted in red. Credit: Lucien Krapp (EPFL).

By Nik Papageorgiou

Proteins are essential to the biological functions of most living organisms. They have evolved to interact with other proteins, nucleic acids, lipids etc., and all of those interactions form large, “supra-molecular” complexes. This means that understanding protein interactions is crucial for understanding many cellular processes.

In a big step forward, scientists in the group of Matteo Dal Peraro at EPFL have developed a new tool called PeSTo (short for Protein Structure Transformer) that can predict the specific regions on the surface of a protein that can interact with other proteins, nucleic acids, lipids, ions, and small molecules. These interfaces are crucial for the formation of supramolecular complexes and function modulation.

PeSTo is built on a neural network based on transformer technology. In the context of machine learning, a transformer is a type of neural network designed to process sequential data, such as natural language by using self-attention mechanisms to weigh the importance of different parts of the input sequence and make predictions. Transformers are now at the core of many modern AI tools.

How does PeSTo work?

“The model evaluates the chemical and physical context of each atom by examining all nearby atoms,” says Lucien Krapp, the main developer of PeSTo. “Using the self-attention mechanism, it focuses on significant atoms and interactions within the protein structure. It means that this method effectively captures the complex interactions within protein structures to enable an accurate prediction of protein binding interfaces”.

Because PeSTo’s predictions are based solely on the position in space and the type of atoms, it can make predictions without needing to describe the physics and chemistry of the protein interface using additional external methods. This eliminates the ‘overhead’ of pre-computing molecular surfaces and additional properties, making it much faster, robust and more general than current methods.

It also means that PeSTo can run fast enough to process large volumes of protein structure data, e.g. ensembles from molecular dynamics simulations or entire foldomes. Ultimately, this enables faster discovery of interfaces that go unseen in conventional static structures resolved experimentally.

PeSTo outperforms other methods for predicting protein interaction interfaces and can predict interactions with nucleic acids, lipids, ligands, ions, and small molecules with high confidence. The model’s low computational cost makes it a valuable tool for the scientific community.

PeSTo applied to the human foldome

The researchers unleashed PeSTo on the human foldome, a growing database of predicted protein structures. They analyzed the interactions that human proteins have with other molecules, and produced detailed information about the human “interfaceome” – the sum total of all protein interacting interfaces in the human body. To do this, the researchers used the AlphaFold European Bioinformatics Institute (AF-EBI) database.

The researchers have made PeSTo available in a user-friendly web server, free of charge and prior registration. The server can take any protein structure in PDB format. The predicted interfaces can be visualized directly in the browser with additional information on the confidence of the prediction on a per-residue basis.

Publishing in Nature Communications, the scientists highlight numerous advantages of PeSTo over older methods, particularly that it can work with all kinds of molecules without needing to know all the details about their chemistry and physics. This makes PeSTo a more flexible, powerful and general tool for studying molecular systems and their interactions.

Read the research in full

PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces, Lucien F. Krapp, Luciano A. Abriata, Fabio Cortés Rodriguez, Matteo Dal Peraro, Nature Communications (2023).




EPFL




            AIhub is supported by:


Related posts :



Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

#AAAI2025 workshops round-up 3: Neural reasoning and mathematical discovery, and AI to accelerate science and engineering

  19 May 2025
We find out about three more of the workshops that took place at AAAI 2025.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence