ΑΙhub.org
 

“Open” alternatives to ChatGPT are on the rise, but how open is AI really?


by
25 July 2023



share this:

Rusty padlock on a green gate
OpenAI’s ChatGPT seems ubiquitous, but open source versions of instruction-tuned text generators are gaining the upper hand. In just 6 months, at least 15 serious alternatives have emerged, all of which have at least one important advantage over ChatGPT: they are a lot more transparent. Insight into training data and algorithms is key for responsible use of generative AI, a team of linguists and language technology researchers at Radboud University claim.

The researchers have mapped this rapidly evolving landscape in a paper and a live-updated website. This shows there are many working alternative “open source” text generators, but also that openness comes in degrees and that many models inherit legal restrictions. They sound a note of cautious optimism. Lead researcher Andreas Liesenfeld: “It’s good to see so many open alternatives emerging. ChatGPT is so popular that it is easy to forget that we don’t know anything about the training data or other tricks being played behind the scenes. This is a liability for anyone who wants to better understand such models or build applications on them. Open alternatives enable critical and fundamental research.”

More and more open

Corporations like OpenAI sometimes claim that AI must be kept under wraps because openness may bring “existential risks”, but the researchers are not impressed. Senior researcher Mark Dingemanse: “Keeping everything closed has allowed OpenAI to hide exploitative labour practices. And talk of so-called existential risk distracts from real and current harms like confabulation, biased output and tidal waves of spam content.” Openness, the researchers argue, makes it easier to hold companies responsible and accountable for the models they make, the data that goes into them (often copyrighted), and the texts that come out of them. 

The research shows that models vary in how open they are: many only share the language model, others also provide insight into the training data, and quite a few are extensively documented. Mark Dingemanse: “In its present form, ChatGPT is unfit for responsible use in research and teaching. It can regurgitate words but has no notion of meaning, authorship, or proper attribution. And that it’s free just means we’re providing OpenAI with free labour and access to our collective intelligence. With open models, at least we can take a look under the hood and make mindful decisions about technology.”

Some additional points

  • New models appear every month, so the paper is mainly a call for action to track their openness and transparency in a systematic way. An accompanying website makes this possible.
  • Many models borrow elements from one another, which can lead to murky legal situations. For instance, the popular Falcon 40B-instruct model builds on a dataset (Baize) meant strictly for research purposes, but still the Falcon makers encourage commercial uses.
  • A key reason ChatGPT feels so fluid is the human labour that goes into the instruction-tuning step (RLHF), in which model output is trimmed and pruned to make it sound more docile and conversational. Open models enable research into what makes people so susceptible to the suggestion of true interactivity.

The researchers presented their findings at the international conference on Conversational User Interfaces in Eindhoven, July 19-21.

Find out more

Opening up ChatGPT: Tracking Openness, Transparency, and Accountability in Instruction-Tuned Text Generators, Andreas Liesenfeld, Alianda Lopez, and Mark Dingemanse. In ACM Conference on Conversational User Interfaces (2023).

Arxiv version

The website




Radboud University




            AIhub is supported by:



Related posts :

AAAI presidential panel – AI and sustainability

  13 Feb 2026
Watch the next discussion based on sustainability, one of the topics covered in the AAAI Future of AI Research report.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

  12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

From Visual Question Answering to multimodal learning: an interview with Aishwarya Agrawal

and   11 Feb 2026
We hear from Aishwarya about research that received a 2019 AAAI / ACM SIGAI Doctoral Dissertation Award honourable mention.

Governing the rise of interactive AI will require behavioral insights

  10 Feb 2026
Yulu Pi writes about her work that was presented at the conference on AI, ethics and society (AIES 2025).

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.

Congratulations to the #AAAI2026 award winners

  05 Feb 2026
Find out who has won the prestigious 2026 awards for their contributions to the field.

Forthcoming machine learning and AI seminars: February 2026 edition

  04 Feb 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 4 February and 31 March 2026.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence