ΑΙhub.org
 

“Open” alternatives to ChatGPT are on the rise, but how open is AI really?


by
25 July 2023



share this:

Rusty padlock on a green gate
OpenAI’s ChatGPT seems ubiquitous, but open source versions of instruction-tuned text generators are gaining the upper hand. In just 6 months, at least 15 serious alternatives have emerged, all of which have at least one important advantage over ChatGPT: they are a lot more transparent. Insight into training data and algorithms is key for responsible use of generative AI, a team of linguists and language technology researchers at Radboud University claim.

The researchers have mapped this rapidly evolving landscape in a paper and a live-updated website. This shows there are many working alternative “open source” text generators, but also that openness comes in degrees and that many models inherit legal restrictions. They sound a note of cautious optimism. Lead researcher Andreas Liesenfeld: “It’s good to see so many open alternatives emerging. ChatGPT is so popular that it is easy to forget that we don’t know anything about the training data or other tricks being played behind the scenes. This is a liability for anyone who wants to better understand such models or build applications on them. Open alternatives enable critical and fundamental research.”

More and more open

Corporations like OpenAI sometimes claim that AI must be kept under wraps because openness may bring “existential risks”, but the researchers are not impressed. Senior researcher Mark Dingemanse: “Keeping everything closed has allowed OpenAI to hide exploitative labour practices. And talk of so-called existential risk distracts from real and current harms like confabulation, biased output and tidal waves of spam content.” Openness, the researchers argue, makes it easier to hold companies responsible and accountable for the models they make, the data that goes into them (often copyrighted), and the texts that come out of them. 

The research shows that models vary in how open they are: many only share the language model, others also provide insight into the training data, and quite a few are extensively documented. Mark Dingemanse: “In its present form, ChatGPT is unfit for responsible use in research and teaching. It can regurgitate words but has no notion of meaning, authorship, or proper attribution. And that it’s free just means we’re providing OpenAI with free labour and access to our collective intelligence. With open models, at least we can take a look under the hood and make mindful decisions about technology.”

Some additional points

  • New models appear every month, so the paper is mainly a call for action to track their openness and transparency in a systematic way. An accompanying website makes this possible.
  • Many models borrow elements from one another, which can lead to murky legal situations. For instance, the popular Falcon 40B-instruct model builds on a dataset (Baize) meant strictly for research purposes, but still the Falcon makers encourage commercial uses.
  • A key reason ChatGPT feels so fluid is the human labour that goes into the instruction-tuning step (RLHF), in which model output is trimmed and pruned to make it sound more docile and conversational. Open models enable research into what makes people so susceptible to the suggestion of true interactivity.

The researchers presented their findings at the international conference on Conversational User Interfaces in Eindhoven, July 19-21.

Find out more

Opening up ChatGPT: Tracking Openness, Transparency, and Accountability in Instruction-Tuned Text Generators, Andreas Liesenfeld, Alianda Lopez, and Mark Dingemanse. In ACM Conference on Conversational User Interfaces (2023).

Arxiv version

The website




Radboud University




            AIhub is supported by:



Related posts :



We asked teachers about their experiences with AI in the classroom — here’s what they said

  05 Dec 2025
Researchers interviewed teachers from across Canada and asked them about their experiences with GenAI in the classroom.

Interview with Alice Xiang: Fair human-centric image dataset for ethical AI benchmarking

  04 Dec 2025
Find out more about this publicly-available, globally-diverse, consent-based human image dataset.

The Machine Ethics podcast: Fostering morality with Dr Oliver Bridge

Talking machine ethics, superintelligence, virtue ethics, AI alignment, fostering morality in humans and AI, and more.

Interview with Frida Hartman: Studying bias in AI-based recruitment tools

  02 Dec 2025
In the next in our series of interviews with ECAI2025 Doctoral Consortium participants, we caught up with Frida, a PhD student at the University of Helsinki.

Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence