ΑΙhub.org
 

Using quantum computing to protect AI systems from attack


by
22 August 2023



share this:
blue waveform on a black background

By Max West and Sarah Erfani

Despite their incredible successes and increasingly widespread deployment, machine learning-based frameworks remain highly susceptible to adversarial attacks – that is, malicious tampering with their data causing them to fail in surprising ways.

For example, image-classifying models (which analyse photos to identify and recognise a wide variety of criteria) can often be fooled by the addition of well-crafted alterations (known as perturbations) to their input images that are so small they are imperceptible to the human eye. And this can be exploited.

The continued vulnerability to attacks like these also raises serious questions about the safety of deploying machine learning neural networks in potentially life-threatening situations. This includes applications like self-driving cars, where the system could be confused into driving through an intersection by an innocuous piece of graffiti on a stop sign.

At a crucial time when the development and deployment of AI are rapidly evolving, our research team is looking at ways we can use quantum computing to protect AI from these vulnerabilities.

Machine learning and quantum computing

Recent advances in quantum computing have generated much excitement about the prospect of enhancing machine learning with quantum computers. Various ‘quantum machine learning’ algorithms already having been proposed, including quantum generalisations of the standard classical methods.

Generalisation refers to a learning model’s ability to adapt properly to new, previously unseen data. It is believed quantum machine learning models can learn certain types of data drastically faster than any model designed for current or ‘classical’ computers.

Ordinary computers work with bits of data that can be either ‘zero’ or ‘one’ – a two-level classical system. Quantum computers work with ‘qubits’, states of two-level quantum systems, which exhibit strange additional properties that can be harnessed in order to tackle certain problems more efficiently than their classical counterparts. What is less clear, however, is how widespread these speedups will be and how useful quantum machine learning will be in practice. This is because although quantum computers are expected to efficiently learn a wider class of models than their classical counterparts, there’s no guarantee these new models will be useful for most machine-learning tasks in which people are actually interested. These might include medical classification problems or generative AI systems.

These challenges motivated our team to consider what other benefits quantum computing could bring to machine learning tasks – other than the usual goals of improving efficiency or accuracy.

Shielding AI from attacks

In our latest research, we suggest quantum machine learning models may be better defended against adversarial attacks generated by classical computers.

Adversarial attacks work by identifying and exploiting the features used by a machine learning model. But the features used by generic quantum machine learning models are inaccessible to classical computers, and therefore invisible to an adversary armed only with classical computing resources.

These ideas could also be used to detect the presence of adversarial attacks, by simultaneously using classical and quantum networks. Under normal conditions, both networks should make the same predictions, but in the presence of an attack – their outputs will diverge. While this is encouraging, quantum machine learning continues to face significant challenges. Chief among them is the massive capability gap that separates classical and quantum computing hardware.

Today’s quantum computers remain significantly limited by their size and their high error rates, which preclude them from carrying out long calculations. Formidable engineering challenges remain, but if these can be overcome, the unique capabilities of large-scale quantum computers will doubtless deliver surprising benefits across a wide range of fields.

Read the research in full

Benchmarking adversarially robust quantum machine learning at scale, Maxwell T. West, Sarah M. Erfani, Christopher Leckie, Martin Sevior, Lloyd C. L. Hollenberg, and Muhammad Usman, Physical Review Research (2023).


This article was first published on Pursuit. Read the original article.




Pursuit, University of Melbourne




            AIhub is supported by:



Related posts :



Memory traces in reinforcement learning

  12 Sep 2025
Onno writes about work presented at ICML 2025, introducing an alternative memory framework.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Interview with Yezi Liu: Trustworthy and efficient machine learning

  10 Sep 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.

Advanced AI models are not always better than simple ones

  09 Sep 2025
Researchers have developed Systema, a new tool to evaluate how well AI models work when predicting the effects of genetic perturbations.

The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence