ΑΙhub.org
 

An approach for automatically determining the possible actions in computer game states


by
17 November 2023



share this:

Due to the great difficulty of thoroughly testing video game software by hand, it is desirable to have AI agents that can automatically explore different game functionalities. A key requirement of such agents is a model of the player actions that the agent can use to both determine the set of possible actions in different game states, as well as perform a chosen action on the game selected by the agent’s policy. The typical game engines that are in use today do not offer such a model of actions, leading existing work to either require human effort to manually define the action model or imprecisely guess the possible actions. In our work, we demonstrate how program analysis is an effective solution to this problem by developing a state-of-the-art analysis for the user input handling logic present in games that can automatically model game actions with a discrete action space.

Our key insight is that the possible actions of games correspond to the different execution paths that can be taken through the user input handling logic present in the game’s code. Our methodology first uses techniques such as dependency analysis and program slicing to identify the parts of code responsible for user input handling. Next, we designed a specialized symbolic execution that evaluates the input handling code with symbolic representations of the user input and game state, giving us a set of conditions under which the different game actions occur. This set of conditions is used to define a discrete action space for the game, where each action corresponds to distinct execution path. Finally, we proposed efficient analyses for determining the set of valid actions as the agent plays the game, as well as the set of relevant device inputs to simulate on the game in order to perform a chosen action.

We implemented a prototype of our action analysis for the Unity game engine, then used it to automate the specification of actions for two popular exploration strategies: simple random exploration, where agents select among the valid actions uniformly at random, and curiosity-driven reinforcement learning, where agents learn over time to prioritize actions more likely to lead to new states. Our key finding was that, for the majority of games in our data set, agents using the actions determined by our analysis achieved exploration performance matching or exceeding that of the ideal case of a manual annotation of the game actions, on average achieving better performance. This demonstrates a key advantage of the capability of the automated analysis to exhaustively consider all possible execution paths, therefore often identifying more combinations of valid inputs than the human annotation.

With the increasing importance of automated testing and analysis techniques for computer games, we believe our work provides a crucial component for the deployment of next generation game testing tools based on intelligent agents. However, even with our automated approach to identifying valid actions and their relevant device inputs, the exploration of large game state spaces remains difficult. The development of novel exploration strategies, refinements, and heuristics to be used with our analysis are important next steps to achieving better game testing agents.

Read the work in full

Automatically Defining Game Action Spaces for Exploration Using Program Analysis, Sasha Volokh, William G.J. Halfond, Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE2023).


This work won the best student paper award at the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE2023).



tags: ,


Sasha Volokh is a PhD Candidate in Computer Science at the University of Southern California.
Sasha Volokh is a PhD Candidate in Computer Science at the University of Southern California.




            AIhub is supported by:



Related posts :

AI is coming to Olympic judging: what makes it a game changer?

  09 Feb 2026
Research suggests that trust, legitimacy, and cultural values may matter just as much as technical accuracy.

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  06 Feb 2026
Sven honoured for his work on AI planning and search.

Congratulations to the #AAAI2026 award winners

  05 Feb 2026
Find out who has won the prestigious 2026 awards for their contributions to the field.

Forthcoming machine learning and AI seminars: February 2026 edition

  04 Feb 2026
A list of free-to-attend AI-related seminars that are scheduled to take place between 4 February and 31 March 2026.

#AAAI2026 social media round up: part 2

  03 Feb 2026
Catch up on the action from the second half of the conference.

Interview with Zijian Zhao: Labor management in transportation gig systems through reinforcement learning

  02 Feb 2026
In the second of our interviews with the 2026 AAAI Doctoral Consortium cohort, we hear from Zijian Zhao.
monthly digest

AIhub monthly digest: January 2026 – moderating guardrails, humanoid soccer, and attending AAAI

  30 Jan 2026
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

The Machine Ethics podcast: 2025 wrap up with Lisa Talia Moretti & Ben Byford

Lisa and Ben chat about the prevalence of AI slop, the end of social media, Grok and explicit content generation, giving legislation more teeth, anthropomorphising reasoning models, and more.


AIhub is supported by:







 













©2026.01 - Association for the Understanding of Artificial Intelligence