ΑΙhub.org
 

Machine learning helps improve quality assurance for wind turbines


by
19 March 2024



share this:
wind turbines in a field

By Sandrine Perroud

Faulty wind turbine blades can incur huge costs for the companies that operate them, especially if the defects go unnoticed until it’s too late. That’s why quality assurance is such a strategic issue for global wind-turbine manufacturers. Today, quality inspections are limited to surface inspection of limited areas as these composite structures roll off the production line. But under a new approach co-created by EPFL and University of Glasgow researchers, inspection engineers can use a new patented radar technology, combined with an AI assistant, to detect possible anomalies beneath the surface. This approach has many advantages: it’s non-destructive, non-contact, supports agile and rapid data acquisition and analysis, and requires very little power to operate. The research has recently been published in Elsevier Mechanical Systems and Signal Processing (MSSP).

Merging signal processing and AI

The research draws on earlier work from both institutional partners. This work was led by Olga Fink, today a tenure-track assistant professor of civil engineering and head of the Intelligent Maintenance and Operations Systems Laboratory (IMOS) within EPFL’s School of Architecture, Civil and Environmental Engineering (ENAC). In previous research, she has developed methods for detecting anomalies by processing the sounds produced by faulty machines, for background noise suppression on audio recordings and for classifying bird songs by infusing learning capabilities into well-known and well-grounded signal processing approaches.

“Manufacturers are building wind turbines bigger, with more complicated designs. All that increases the chances of a defect occurring during the manufacturing stage.”
– Olga Fink, Head of the Intelligent Maintenance and Operations Systems Laboratory (IMOS)

Today, she’s looking at new applications for her AI-driven systems. “Wind turbines are made from several different composite materials like fiberglass and carbon fiber,” she says. “Manufacturers are also building them bigger, with more complicated designs. All that increases the chances of a defect occurring during the manufacturing stage.”

Measurement technology

The University of Glasgow team, led by Prof. David Flynn, James Watt School of Engineering, and Head of Research Division for Autonomous Systems and Connectivity has pioneered methods in prognostics and health management. They have explored how Robotics and Artificial Intelligence (RAI) can support net zero infrastructure. The researchers in Glasgow used a patented Frequency Modulated Continuous Wave radar with a robotic arm to inspect industrial wind-turbine blade samples at distances of 5, 10 and 15 centimeters from the sample. Using signal processing methods, they could isolate features and precursors to future failures in these complex composite samples (see below a video produced by the University of Glasgow).

Improve data representation

When providing this experimental data to the IMOS team, the challenge was to enhance the information content of the features embedded within this raw data. It turned out that the signals obtained by the radar varied depending on the inspection distance and the blade’s surface material and core material. Gaëtan Frusque, a postdoc at IMOS and the study’s lead author, explains: “At IMOS, we used a complex-value representation of the signals to better separate the information they contain, and to adapt the AI model accordingly.” As a result, the algorithm they developed can distinguish anomalies from uniform turbine parts.

The Glasgow researchers now plan to collect more data to further validate the IMOS results. The researchers plan to eventually test their method on existing turbines, which they can do by fitting the sensor to a robotic arm or onto a drone. This should enable them to spot manufacturing defects in turbines before they’re put into service or to inspect the turbines during operation. Once installed, defect-free turbines can operate for around 20 years.

Read the research in full

Non-contact sensing for anomaly detection in wind turbine blades: A focus-SVDD with complex-valued auto-encoder approach, Gaëtan Frusque, Daniel Mitchell, Jamie Blanche, David Flynn, Olga Fink.




EPFL




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: March 2025 – human-allied AI, differential privacy, and social media microtargeting

  28 Mar 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

AI ring tracks spelled words in American Sign Language

  27 Mar 2025
In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling.

How AI images are ‘flattening’ Indigenous cultures – creating a new form of tech colonialism

  26 Mar 2025
AI-generated stock images that claim to depict “Indigenous Australians”, don’t resemble Aboriginal and Torres Strait Islander peoples.

Interview with Lea Demelius: Researching differential privacy

  25 Mar 2025
We hear from doctoral consortium participant Lea Demelius who is investigating the trade-offs and synergies that arise between various requirements for trustworthy AI.

The Machine Ethics podcast: Careful technology with Rachel Coldicutt

This episode, Ben chats to Rachel Coldicutt about AI taxonomy, innovating for everyone not just the few, responsibilities of researchers, and more.

Interview with AAAI Fellow Roberto Navigli: multilingual natural language processing

  21 Mar 2025
Roberto tells us about his career path, some big research projects he’s led, and why it’s important to follow your passion.

Museums have tons of data, and AI could make it more accessible − but standardizing and organizing it across fields won’t be easy

  20 Mar 2025
How can AI models help organize large amounts of data from different collections, and what are the challenges?

Shlomo Zilberstein wins the 2025 ACM/SIGAI Autonomous Agents Research Award

  19 Mar 2025
Congratulations to Shlomo Zilberstein on winning this prestigious award!




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association