ΑΙhub.org
 

Machine learning viability modelling of vertical-axis wind turbines


by
22 April 2024



share this:

Sébastien Le Fouest and an experimental VAWT blade © Alain Herzog CC BY SA.

By Celia Luterbacher

EPFL researchers have used a genetic learning algorithm to identify optimal pitch profiles for the blades of vertical-axis wind turbines, which despite their high energy potential, have until now been vulnerable to strong gusts of wind.

If you imagine an industrial wind turbine, you likely picture the windmill design, technically known as a horizontal-axis wind turbine (HAWT). But the very first wind turbines, which were developed in the Middle East around the 8th century for grinding grain, were vertical-axis wind turbines (VAWT), meaning they spun perpendicular to the wind, rather than parallel.

Due to their slower rotation speed, VAWTs are less noisy than HAWTs and achieve greater wind energy density, meaning they need less space for the same output both on- and off-shore. The blades are also more wildlife-friendly: because they rotate laterally, rather than slicing down from above, they are easier for birds to avoid.

With these advantages, why are VAWTs largely absent from today’s wind energy market? As Sébastien Le Fouest, a researcher in the School of Engineering Unsteady Flow Diagnostics Lab (UNFOLD) explains, it comes down to an engineering problem – air flow control – that he believes can be solved with a combination of sensor technology and machine learning. In a paper recently published in Nature Communications, Le Fouest and UNFOLD head Karen Mulleners describe two optimal pitch profiles for VAWT blades, which achieve a 200% increase in turbine efficiency and a 77% reduction in structure-threatening vibrations.

“Our study represents, to the best of our knowledge, the first experimental application of a genetic learning algorithm to determine the best pitch for a VAWT blade,” Le Fouest says.

Turning an Achilles’ heel into an advantage

Le Fouest explains that while Europe’s installed wind energy capacity is growing by 19 gigawatts per year, this figure needs to be closer to 30 GW to meet the UN’s 2050 objectives for carbon emissions.

“The barriers to achieving this are not financial, but social and legislative – there is very low public acceptance of wind turbines because of their size and noisiness,” he says.

Despite their advantages in this regard, VAWTs suffer from a serious drawback: they only function well with moderate, continuous air flow. The vertical axis of rotation means that the blades are constantly changing orientation with respect to the wind. A strong gust increases the angle between air flow and blade, forming a vortex in a phenomenon called dynamic stall. These vortices create transient structural loads that the blades cannot withstand.

EPFL’s experimental VAWT blade © UNFOLD EPFL CC BY SA.

To tackle this lack of resistance to gusts, the researchers mounted sensors onto an actuating blade shaft to measure the air forces acting on it. By pitching the blade back and forth at different angles, speeds, and amplitudes, they generated series of ‘pitch profiles’. Then, they used a computer to run a genetic algorithm, which performed over 3500 experimental iterations. Like an evolutionary process, the algorithm selected for the most efficient and robust pitch profiles, and recombined their traits to generate new and improved ‘offspring’.

This approach allowed the researchers not only to identify two pitch profile series that contribute to significantly enhanced turbine efficiency and robustness, but also to turn the biggest weakness of VAWTs into a strength.

“Dynamic stall – the same phenomenon that destroys wind turbines – at a smaller scale can actually propel the blade forward. Here, we really use dynamic stall to our advantage by redirecting the blade pitch forward to produce power,” Le Fouest explains. “Most wind turbines angle the force generated by the blades upwards, which does not help the rotation. Changing that angle not only forms a smaller vortex – it simultaneously pushes it away at precisely the right time, which results in a second region of power production downwind.”

The Nature Communications paper represents Le Fouest’s PhD work in the UNFOLD lab. Now, he has received a BRIDGE grant from the Swiss National Science Foundation (SNSF) and Innosuisse to build a proof-of-concept VAWT. The goal is to install it outdoors, so that it can be tested as it responds in real time to real-world conditions.

“We hope this air flow control method can bring efficient and reliable VAWT technology to maturity so that it can finally be made commercially available,” Le Fouest says.

Read the research in full

Optimal blade pitch control for enhanced vertical-axis wind turbine performance, Sébastien Le Fouest & Karen Mulleners (2024).



tags: ,


EPFL




            AIhub is supported by:



Related posts :



The Machine Ethics podcast: Autonomy AI with Adir Ben-Yehuda

This episode Adir and Ben chat about AI automation for frontend web development, where human-machine interface could be going, allowing an LLM to optimism itself, job displacement, vibe coding and more.

Using generative AI, researchers design compounds that can kill drug-resistant bacteria

  05 Sep 2025
The team used two different AI approaches to design novel antibiotics, including one that showed promise against MRSA.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

How the internet and its bots are sabotaging scientific research

  03 Sep 2025
What most people have failed to fully realise is that internet research has brought along risks of data corruption or impersonation.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  02 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Forthcoming machine learning and AI seminars: September 2025 edition

  01 Sep 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 2 September and 31 October 2025.
monthly digest

AIhub monthly digest: August 2025 – causality and generative modelling, responsible multimodal AI, and IJCAI in Montréal and Guangzhou

  29 Aug 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Interview with Benyamin Tabarsi: Computing education and generative AI

  28 Aug 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence