ΑΙhub.org
 

DataLike: Interview with Motunrayo Kilanko

Motunrayo Kilanko is a seasoned data management and analytics specialist who has worked in the fields of data analysis, data management, and data annotation for machine learning. She works presently as a management analyst with a government healthcare agency in the State of Delaware, United States. She is also an AI enthusiast that teaches women how to use AI for their work and business. Her career interests spans Data, AI, public health, and empowerment of women.

She is the founder of Femote, a social impact startup that provides business support and outsourcing services such as data annotation, data processing, and data entry to companies around the world by trained and skilled female professionals from Africa. She also created the Femote School, which aims to close the gender gap and promote women’s participation and inclusion in the digital economy by providing them with digital skills training and upskilling. Her start-up, Femote, was featured in MovingWorlds. She has also been featured in Upwork’s 2022 Investment Impact Report and Stack Journal.

Hi Motunrayo, could you recap what were your first steps in the field of data, and how you got started?

My data career journey began during my undergraduate years as a public health student at Babcock University. Towards the end of my third year at the university, an assistant professor in my department, some of my classmates, and I participated in a research and statistics training program.

It was an immersion program for me where I learned about research methodology, some statistical methods, and data analysis. The session I enjoyed the most was the data analysis session using tools like SPSS and Epi Info. After the training program, I helped my classmates analyze their final year papers and also trained some students on how to analyze their data using SPSS.

This was the beginning of my data journey, and I continued to work with data in various capacities throughout my postgraduate studies and early career. In 2018, I transitioned to tech, and in 2019, I started my journey as a data annotation specialist and data analyst at a startup in Ibadan, Nigeria.

Can you share a particularly challenging moment in your career and how you overcame it?

One of the challenges I faced in my career was moving from the learning phase to the point where I started applying for jobs. I also thought I needed to know all the tools before I could start using my skills.

I later discovered that most of the learning you do is on the job, especially in the beginning. Sometimes you learn about one tool and another tool is used by your prospective employer.

I have learned to keep my learning up to date and get my hands dirty quickly when I need to learn something new or a new tool or platform is needed for my work.

What advice would you give to someone just starting in data?

Don’t wait till you are an expert before taking on projects. Don’t stay too long in the learning phase, explore internships, apprenticeships, and free work to start.

Also, go on LinkedIn, search for the kind of role you want, and make a list of the most sought-after skills; both hard and soft skills and learn those quickly. AI is disrupting every industry, so start learning and exploring AI tools to do your projects.

AI will help you 10x your productivity as a data professional but be careful not to use sensitive data on public AI tools.

You can keep up with Motunrayo on LinkedIn and Mainstack.




Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.
Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.

Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.
Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.

Datalike




            AIhub is supported by:


Related posts :



monthly digest

AIhub monthly digest: May 2025 – materials design, object state classification, and real-time monitoring for healthcare data

  30 May 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

The Good Robot podcast: Transhumanist fantasies with Alexander Thomas

  28 May 2025
In this episode, Eleanor talks to Alexander Thomas, a filmmaker and academic, about the transhumanist narrative.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Interview with Gillian Hadfield: Normative infrastructure for AI alignment

  22 May 2025
Kumar Kshitij Patel spoke to Gillian Hadfield about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems.

PitcherNet helps researchers throw strikes with AI analysis

  21 May 2025
Baltimore Orioles tasks Waterloo Engineering researchers to develop AI tech that can monitor pitchers using low-resolution video captured by smartphones

Interview with Filippos Gouidis: Object state classification

  20 May 2025
Read the latest interview in our series featuring the AAAI/SIGAI Doctoral Consortium participants.



 

AIhub is supported by:






©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence