ΑΙhub.org
 

DataLike: Interview with Wuraola Oyewusi


Wuraola Oyewusi is a Data Scientist, Technical Instructor, and Pharmacist, a passionate professional committed to advancing artificial intelligence practice. She has held roles in AI research as a Researcher (data science and data curation) at the Imperial College London and previously led Research and Innovation at Data Science Nigeria.

Her research interest is in natural language processing and she has also been at the forefront of unstructured data application and open source access, especially in the area of health and language.

She is the author and instructor of:

She contributed to the Springer AI in Medicine textbook and teaches tech in Yoruba on YouTube. You can follow her research publications and medium blog.

Can you share how you started working with data?

By chance, I was reading job descriptions, I found one about data analysis, I thought I could do many things on the list except SQL. So I decided to check out what it was all about.

What is the most challenging aspect of your day-to-day activities?

I currently work in research, so I will say active study and understanding of a lot of academic content.

And the most rewarding?

Finding interesting patterns. Having the license to be curious.

Could you share with us how you got started with the LinkedIn learning courses?

I applied using the instructor recruitment link. They are always recruiting. It might have also helped that I wrote a series of articles (I think you should write, it’s useful for your portfolio. I got my first data science job offer because someone read my article).

Can you share a project or experience that was particularly rewarding or memorable for you?

Hmmm, there are a lot of projects but since I have to share one, I will say deriving a scoring method to compare how people agree on a data labeling task from the text component of the data.
Then teaching Tech concepts including AI in Yoruba Language. I wrote all about my method here.

How does your background in pharmacy help your career?

My background is helpful for scale. The pharmacy curriculum is diverse and my confidence to experiment and document processes can be traced back to pharmacy labs. Also, ease and familiarity with clinical/healthcare-related terms in my work and research is invaluable! I can label my data, find the information I need, and also ask precise questions.

Could you share with us something you wished you could tell yourself now that you have more experience in data science?

I will say keep at it! You did right by yourself by going as deep as possible.

We thank Wuraola for her sharing her journey and story with us. You can keep up with her on Linkedin and X (Twitter).




Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.
Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.

Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.
Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.

Datalike




            AIhub is supported by:


Related posts :



Dataset reveals how Reddit communities are adapting to AI

  25 Apr 2025
Researchers at Cornell Tech have released a dataset extracted from more than 300,000 public Reddit communities.

Interview with Eden Hartman: Investigating social choice problems

  24 Apr 2025
Find out more about research presented at AAAI 2025.

The Machine Ethics podcast: Co-design with Pinar Guvenc

This episode, Ben chats to Pinar Guvenc about co-design, whether AI ready for society and society is ready for AI, what design is, co-creation with AI as a stakeholder, bias in design, small language models, and more.

Why AI can’t take over creative writing

  22 Apr 2025
A large language model tries to generate what a random person who had produced the previous text would produce.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Images of AI – between fiction and function

“The currently pervasive images of AI make us look somewhere, at the cost of somewhere else.”

Grace Wahba awarded the 2025 International Prize in Statistics

  16 Apr 2025
Her contributions laid the foundation for modern statistical techniques that power machine learning algorithms such as gradient boosting and neural networks.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association