ΑΙhub.org
 

DataLike: Interview with Wuraola Oyewusi


Wuraola Oyewusi is a Data Scientist, Technical Instructor, and Pharmacist, a passionate professional committed to advancing artificial intelligence practice. She has held roles in AI research as a Researcher (data science and data curation) at the Imperial College London and previously led Research and Innovation at Data Science Nigeria.

Her research interest is in natural language processing and she has also been at the forefront of unstructured data application and open source access, especially in the area of health and language.

She is the author and instructor of:

She contributed to the Springer AI in Medicine textbook and teaches tech in Yoruba on YouTube. You can follow her research publications and medium blog.

Can you share how you started working with data?

By chance, I was reading job descriptions, I found one about data analysis, I thought I could do many things on the list except SQL. So I decided to check out what it was all about.

What is the most challenging aspect of your day-to-day activities?

I currently work in research, so I will say active study and understanding of a lot of academic content.

And the most rewarding?

Finding interesting patterns. Having the license to be curious.

Could you share with us how you got started with the LinkedIn learning courses?

I applied using the instructor recruitment link. They are always recruiting. It might have also helped that I wrote a series of articles (I think you should write, it’s useful for your portfolio. I got my first data science job offer because someone read my article).

Can you share a project or experience that was particularly rewarding or memorable for you?

Hmmm, there are a lot of projects but since I have to share one, I will say deriving a scoring method to compare how people agree on a data labeling task from the text component of the data.
Then teaching Tech concepts including AI in Yoruba Language. I wrote all about my method here.

How does your background in pharmacy help your career?

My background is helpful for scale. The pharmacy curriculum is diverse and my confidence to experiment and document processes can be traced back to pharmacy labs. Also, ease and familiarity with clinical/healthcare-related terms in my work and research is invaluable! I can label my data, find the information I need, and also ask precise questions.

Could you share with us something you wished you could tell yourself now that you have more experience in data science?

I will say keep at it! You did right by yourself by going as deep as possible.

We thank Wuraola for her sharing her journey and story with us. You can keep up with her on Linkedin and X (Twitter).




Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.
Ndane Ndazhaga is a Data Scientist who loves using data to improve businesses and help make decisions.

Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.
Isabella Bicalho-Frazeto is an all-things machine learning person who advocates for democratizing machine learning.

Datalike




            AIhub is supported by:


Related posts :



Interview with Yuki Mitsufuji: Improving AI image generation

  23 Jan 2025
Find out about two pieces of research tackling different aspects of image generation.

The Good Robot podcast: Using feminist chatbots to fight trolls with Sarah Ciston

  22 Jan 2025
Eleanor and Kerry chat to Sarah Ciston about the difficult labor of content moderation, chatbots to combat trolls, and more.

An open-source training framework to advance multimodal AI

  22 Jan 2025
EPFL researchers have developed 4M, a next-generation, framework for training versatile and scalable multimodal foundation models.

Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association