ΑΙhub.org
monthly digest
 

AIhub monthly digest: June 2024 – network resource allocation, protein structure prediction, and a Ge’ez-Amharic-English dataset


by
27 June 2024



share this:
Panda and tiger reading

Welcome to our monthly digest, where you can catch up with any AIhub stories you may have missed, peruse the latest news, recap recent events, and more. This month, we hear about a Ge’ez-Amharic-English dataset, meet AAAI Fellow Mausam, and learn about network resource allocation.

Meeting AAAI Fellow Professor Mausam

Each year the AAAI recognizes a group of individuals who have made significant, sustained contributions to the field of artificial intelligence by appointing them as Fellows. Over the course of the next few months, we’ll be talking to some of the 2024 AAAI Fellows. In the first interview in the series, we met Professor Mausam and found out about his research, career path, mentorship, and why it is important to add some creative pursuits to your life.

Interview with Henok Biadglign Ademtew: Creating an Amharic, Ge’ez and English parallel dataset

African languages are not well-represented in natural language processing (NLP). This is in large part due to a lack of resources for training models. Henok Biadglign Ademtew and Mikiyas Girma Birbo have created an Amharic, Ge’ez, and English parallel dataset to help advance research into low-resource languages. We spoke to Henok about this project, the creation of the dataset, and some of the challenges faced.

An iterative refinement model for PROTAC-induced structure prediction

Proteolysis targeting chimeras (PROTACs) are small molecules that trigger the breakdown of traditionally “undruggable” proteins by binding simultaneously to their targets and degradation-associated proteins. In this blogpost, Bo Qiang, Wenxian Shi, Yuxuan Song and Menghua Wu write about their work on PROTAC-induced structure prediction.

Learning programs with numerical reasoning

Inductive logic programming is a form of program synthesis that can learn explainable programs from small numbers of examples. However, current approaches struggle to learn programs with numerical values. In this blogpost, Céline Hocquette writes about her work introducing a novel approach to dealing with these numerical values.

Interview with Tianfu Wang: A reinforcement learning framework for network resource allocation

We heard from Tianfu Wang about work addressing resource allocation problems using a reinforcement learning framework, specifically in the domain of network virtualization. The work has implications for applications such as network management, cloud computing, and 5G networks, where efficient resource allocation is critical.

IJCAI 2024 awards

The winners of three International Joint Conferences on Artificial Intelligence (IJCAI) awards have been announced. This year, these three distinctions have been awarded to:

AI Fringe London

The AI Fringe returned for a second year on 5 June. The event was designed to complement the AI Seoul Summit which was co-hosted by the UK and South Korea governments. If you missed the livestream, you can catch the recordings of the half-day event here.

Public voices in AI

Early June saw the launch of a Public Voices in AI Fund, financed by UK Research and Innovation. This will support projects that “seek to ensure that uses of AI are informed by the voices of people underrepresented in or negatively impacted by AI”. The fund is part of the wider Public Voices in AI project which aims to ensure that public views and voices are front and centre in all uses of AI.

International Conference on Web and Social Media

The 18th International Conference on Web and Social Media (ICWSM) took place from 3-6 June in Buffalo, USA. The conference cuts across many disciplines including network science, machine learning, computational linguistics, sociology, communication, and political science. In this round-up, we took a look at what the participants got up to at the event.

Developing an LLM: Building, Training, Finetuning

In a one-hour explainer video “Developing an LLM: Building, Training, Finetuning“, Sebastian Raschka covers the development cycle of LLMs, from architecture and pretraining to the different stages of finetuning.


Our resources page
Seminars in 2024
AAAI/ACM SIGAI Doctoral Consortium interview series
AI around the world focus series
UN SDGs focus series
New voices in AI series



tags:


Lucy Smith is Senior Managing Editor for AIhub.
Lucy Smith is Senior Managing Editor for AIhub.




            AIhub is supported by:



Related posts :



We asked teachers about their experiences with AI in the classroom — here’s what they said

  05 Dec 2025
Researchers interviewed teachers from across Canada and asked them about their experiences with GenAI in the classroom.

Interview with Alice Xiang: Fair human-centric image dataset for ethical AI benchmarking

  04 Dec 2025
Find out more about this publicly-available, globally-diverse, consent-based human image dataset.

The Machine Ethics podcast: Fostering morality with Dr Oliver Bridge

Talking machine ethics, superintelligence, virtue ethics, AI alignment, fostering morality in humans and AI, and more.

Interview with Frida Hartman: Studying bias in AI-based recruitment tools

  02 Dec 2025
In the next in our series of interviews with ECAI2025 Doctoral Consortium participants, we caught up with Frida, a PhD student at the University of Helsinki.

Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence