ΑΙhub.org
 

The Good Robot Podcast: Featuring Maurice Chiodo


by
16 July 2024



share this:
Space scene with words Good Robot Podcast

Hosted by Eleanor Drage and Kerry Mackereth, The Good Robot is a podcast which explores the many complex intersections between gender, feminism and technology. In this episode, Maurice Chiodo talks about ethical maths.

What on Earth is ethical maths? With Maurice Chiodo

We often think that maths is neutral or can’t be harmful, because after all, what could numbers do to hurt us? In this episode, we talk to Dr Maurice Chiodo, a mathematician at the University of Cambridge, who’s now based at the Centre for Existential Risk. He tells us why maths can actually throw out big ethical issues. Take the atomic bomb or the maths used by Cambridge Analytica to influence the Brexit referendum or the US elections. Together, we explore why it’s crucial that we understand the role that maths plays in unethical AI.

Listen to the episode here:

Maurice Chiodo addresses the ethical challenges and risks posed by mathematics, mathematicians, and mathematically-powered technologies. His research looks at the ethical issues arising in all types of mathematical work, including AI, finance, modelling, surveillance, and statistics. He set up the Ethics in Mathematics Project in 2016 and has been its principal investigator since then, delivering seminar series, giving invited talks, and producing scholarly articles in the area. Maurice has direct industry experience with over 30 startups, having been a member of the Ethics Advisory Group at Machine Intelligence Garage UK for over two years. He comes from a background in research mathematics, holding two PhDs in mathematics, from the University of Cambridge and the University of Melbourne, and has over a decade of experience working as an academic mathematician on problems in algebra and computability theory.

About The Good Robot Podcast

Dr Eleanor Drage and Dr Kerry Mackereth are Research Associates at the Leverhulme Centre for the Future of Intelligence, where they work on the Mercator-Stiflung funded project on Desirable Digitalisation. Previously, they were Christina Gaw Postdoctoral Researchers in Gender and Technology at the University of Cambridge Centre for Gender Studies. During the COVID-19 pandemic they decided to co-found The Good Robot Podcast to explore the many complex intersections between gender, feminism and technology.




The Good Robot Podcast




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence