ΑΙhub.org
 

Explainable AI for detecting and monitoring infrastructure defects

by
03 October 2024



share this:

By Sandrine Perroud

AI can help improve railway safety by enabling automated inspections of tracks, crossties, ballasts and retaining walls. Researchers at EPFL’s Intelligent Maintenance and Operations Systems (IMOS) Laboratory have developed an AI-driven method that improves the efficiency of crack detection in concrete structures. Their research, recently published in Automation in Construction, introduces a novel method that employs explainable artificial intelligence, or a form of AI which allows users to understand the basis of AI decisions.

“We trained an algorithm to differentiate between images with and without cracks in concrete walls [a binary classification task] by feeding it hundreds of image samples from both categories. Then we asked the algorithm to highlight which pixels it used to make its decision,” says Florent Forest, a scientist at the IMOS lab and the study’s lead author. The algorithm successfully identified the pixels corresponding to cracks. “With our approach, users can feed the algorithm images taken over several years of a section of railway – or of any other kind of infrastructure that’s inspected regularly – and ask it to quantify the severity of cracks in walls and crossties over time. This helps infrastructure operators plan their maintenance more effectively,” he says.

Concrete crossties must be maintained by rail network operators.

Enhanced inspections

Currently, railway operators regularly inspect the condition of infrastructure such as retaining walls by using predefined criteria, where grades are assigned by experienced inspectors. However, this process is often prone to subjective evaluations and makes it difficult to track changes over time, especially when different inspectors assess the same section of infrastructure at different points in time.

Thanks to advancements in digitalization, railway operators can monitor track conditions using a specialized monitoring coach equipped with various measuring devices and side and floor cameras for the visual inspection of rails, concrete crossties and retaining walls. By using these AI-driven systems for damage severity quantification, the inspection process can be automated, making it more objective, accurate and easier to compare over time.

The EPFL research team will test its method on sections of railway between Zermatt and Brig and between Brig and Disentis. These sections include a number of retaining walls of different shapes and materials, making the task significantly challenging for the algorithm. The team has already collected drone images, along with those from the monitoring coach, and will use its AI algorithm to assist the railway operator in monitoring its infrastructure more frequently and systematically.

Read the work in full

From classification to segmentation with explainable AI: A study on crack detection and growth monitoring, Florent Forest, Hugo Porta, Devis Tuia and Olga Fink, Automation in Construction, September 2024.




EPFL




            AIhub is supported by:


Related posts :



VQAScore: Evaluating and improving vision-language generative models

We introduce a new evaluation metric and benchmark dataset for automated evaluation of text-to-visual generative models.
06 November 2024, by

Harnessing AI for a climate-resilient Africa: An interview with Amal Nammouchi, co-founder of AfriClimate AI

We spoke to Amal about how AfriClimate AI started, and the projects and initiatives that the team are focussing on.
05 November 2024, by

Forthcoming machine learning and AI seminars: November 2024 edition

A list of free-to-attend AI-related seminars that are scheduled to take place between 4 November and 31 December 2024.
04 November 2024, by

The Machine Ethics podcast: Socio-technical systems with Lisa Talia Moretti

In this episode Ben chats to Lisa about data and AI literacy, data governance, ethical frameworks, and more.
01 November 2024, by

Building trust in AI: Transparent models for better decisions

AI is becoming a part of our daily lives, from approving loans to diagnosing diseases. But if we can't understand the decisions the models output, how can we trust them?
31 October 2024, by

Congratulations to the #ECAI2024 outstanding paper award winners

Find out which articles won the ECAI and PAIS 2024 awards.
30 October 2024, by




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association