ΑΙhub.org
 

Explainable AI for detecting and monitoring infrastructure defects


by
03 October 2024



share this:

By Sandrine Perroud

AI can help improve railway safety by enabling automated inspections of tracks, crossties, ballasts and retaining walls. Researchers at EPFL’s Intelligent Maintenance and Operations Systems (IMOS) Laboratory have developed an AI-driven method that improves the efficiency of crack detection in concrete structures. Their research, recently published in Automation in Construction, introduces a novel method that employs explainable artificial intelligence, or a form of AI which allows users to understand the basis of AI decisions.

“We trained an algorithm to differentiate between images with and without cracks in concrete walls [a binary classification task] by feeding it hundreds of image samples from both categories. Then we asked the algorithm to highlight which pixels it used to make its decision,” says Florent Forest, a scientist at the IMOS lab and the study’s lead author. The algorithm successfully identified the pixels corresponding to cracks. “With our approach, users can feed the algorithm images taken over several years of a section of railway – or of any other kind of infrastructure that’s inspected regularly – and ask it to quantify the severity of cracks in walls and crossties over time. This helps infrastructure operators plan their maintenance more effectively,” he says.

Concrete crossties must be maintained by rail network operators.

Enhanced inspections

Currently, railway operators regularly inspect the condition of infrastructure such as retaining walls by using predefined criteria, where grades are assigned by experienced inspectors. However, this process is often prone to subjective evaluations and makes it difficult to track changes over time, especially when different inspectors assess the same section of infrastructure at different points in time.

Thanks to advancements in digitalization, railway operators can monitor track conditions using a specialized monitoring coach equipped with various measuring devices and side and floor cameras for the visual inspection of rails, concrete crossties and retaining walls. By using these AI-driven systems for damage severity quantification, the inspection process can be automated, making it more objective, accurate and easier to compare over time.

The EPFL research team will test its method on sections of railway between Zermatt and Brig and between Brig and Disentis. These sections include a number of retaining walls of different shapes and materials, making the task significantly challenging for the algorithm. The team has already collected drone images, along with those from the monitoring coach, and will use its AI algorithm to assist the railway operator in monitoring its infrastructure more frequently and systematically.

Read the work in full

From classification to segmentation with explainable AI: A study on crack detection and growth monitoring, Florent Forest, Hugo Porta, Devis Tuia and Olga Fink, Automation in Construction, September 2024.




EPFL




            AIhub is supported by:



Related posts :



We asked teachers about their experiences with AI in the classroom — here’s what they said

  05 Dec 2025
Researchers interviewed teachers from across Canada and asked them about their experiences with GenAI in the classroom.

Interview with Alice Xiang: Fair human-centric image dataset for ethical AI benchmarking

  04 Dec 2025
Find out more about this publicly-available, globally-diverse, consent-based human image dataset.

The Machine Ethics podcast: Fostering morality with Dr Oliver Bridge

Talking machine ethics, superintelligence, virtue ethics, AI alignment, fostering morality in humans and AI, and more.

Interview with Frida Hartman: Studying bias in AI-based recruitment tools

  02 Dec 2025
In the next in our series of interviews with ECAI2025 Doctoral Consortium participants, we caught up with Frida, a PhD student at the University of Helsinki.

Forthcoming machine learning and AI seminars: December 2025 edition

  01 Dec 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 1 December 2025 and 31 January 2026.
monthly digest

AIhub monthly digest: November 2025 – learning robust controllers, trust in multi-agent systems, and a new fairness evaluation dataset

  28 Nov 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.

EU proposal to delay parts of its AI Act signal a policy shift that prioritises big tech over fairness

  27 Nov 2025
The EC has proposed delaying parts of the act until 2027 following intense pressure from tech companies and the Trump administration.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence