ΑΙhub.org
 

Explainable AI for detecting and monitoring infrastructure defects


by
03 October 2024



share this:

By Sandrine Perroud

AI can help improve railway safety by enabling automated inspections of tracks, crossties, ballasts and retaining walls. Researchers at EPFL’s Intelligent Maintenance and Operations Systems (IMOS) Laboratory have developed an AI-driven method that improves the efficiency of crack detection in concrete structures. Their research, recently published in Automation in Construction, introduces a novel method that employs explainable artificial intelligence, or a form of AI which allows users to understand the basis of AI decisions.

“We trained an algorithm to differentiate between images with and without cracks in concrete walls [a binary classification task] by feeding it hundreds of image samples from both categories. Then we asked the algorithm to highlight which pixels it used to make its decision,” says Florent Forest, a scientist at the IMOS lab and the study’s lead author. The algorithm successfully identified the pixels corresponding to cracks. “With our approach, users can feed the algorithm images taken over several years of a section of railway – or of any other kind of infrastructure that’s inspected regularly – and ask it to quantify the severity of cracks in walls and crossties over time. This helps infrastructure operators plan their maintenance more effectively,” he says.

Concrete crossties must be maintained by rail network operators.

Enhanced inspections

Currently, railway operators regularly inspect the condition of infrastructure such as retaining walls by using predefined criteria, where grades are assigned by experienced inspectors. However, this process is often prone to subjective evaluations and makes it difficult to track changes over time, especially when different inspectors assess the same section of infrastructure at different points in time.

Thanks to advancements in digitalization, railway operators can monitor track conditions using a specialized monitoring coach equipped with various measuring devices and side and floor cameras for the visual inspection of rails, concrete crossties and retaining walls. By using these AI-driven systems for damage severity quantification, the inspection process can be automated, making it more objective, accurate and easier to compare over time.

The EPFL research team will test its method on sections of railway between Zermatt and Brig and between Brig and Disentis. These sections include a number of retaining walls of different shapes and materials, making the task significantly challenging for the algorithm. The team has already collected drone images, along with those from the monitoring coach, and will use its AI algorithm to assist the railway operator in monitoring its infrastructure more frequently and systematically.

Read the work in full

From classification to segmentation with explainable AI: A study on crack detection and growth monitoring, Florent Forest, Hugo Porta, Devis Tuia and Olga Fink, Automation in Construction, September 2024.




EPFL




            AIhub is supported by:



Related posts :



Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.
monthly digest

AIhub monthly digest: September 2025 – conference reviewing, soccer ball detection, and memory traces

  30 Sep 2025
Welcome to our monthly digest, where you can catch up with AI research, events and news from the month past.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence