ΑΙhub.org
 

Why ChatGPT struggles with math


by
07 November 2024



share this:

Have you ever tried to use an AI tool like ChatGPT to do some math and found it doesn’t always add up? It turns out there’s a reason for that.

As large language models (LLMs) like OpenAI’s ChatGPT become more ubiquitous, people increasingly rely on them for work and research assistance. Yuntian Deng, assistant professor at the David R. Cheriton School of Computer Science, discusses some of the challenges in LLMs’ reasoning capabilities, particularly in math, and explores the implications of using these models to aid problem-solving.

What flaw did you discover in ChatGPT’s ability to do math?

As I explained in a recent post on X, the latest reasoning variant of ChatGPT o1, struggles with large-digit multiplication, especially when multiplying numbers beyond nine digits. This is a notable improvement over the previous ChatGPT-4o model, which struggled even with four-digit multiplication, but it’s still a major flaw.

What implications does this have regarding the tool’s ability to reason?

Large-digit multiplication is a useful test of reasoning because it requires a model to apply principles learned during training to new test cases. Humans can do this naturally. For instance, if you teach a high school student how to multiply nine-digit numbers, they can easily extend that understanding to handle ten-digit multiplication, demonstrating a grasp of the underlying principles rather than mere memorization.

In contrast, LLMs often struggle to generalize beyond the data they have been trained on. For example, if an LLM is trained on data involving multiplication of up to nine-digit numbers, it typically cannot generalize to ten-digit multiplication.

As LLMs become more powerful, their impressive performance on challenging benchmarks can create the perception that they can “think” at advanced levels. It’s tempting to rely on them to solve novel problems or even make decisions. However, the fact that even o1 struggles with reliably solving large-digit multiplication problems indicates that LLMs still face challenges when asked to generalize to new tasks or unfamiliar domains.

Why is it important to study how these LLMs “think”?

Companies like OpenAI haven’t fully disclosed the details of how their models are trained or the data they use. Understanding how these AI models operate allows researchers to identify their strengths and limitations, which is essential for improving them. Moreover, knowing these limitations helps us understand which tasks are best suited for LLMs and where human expertise is still crucial.




University of Waterloo




            AIhub is supported by:


Related posts :



Optimizing LLM test-time compute involves solving a meta-RL problem

  20 Jan 2025
By altering the LLM training objective, we can reuse existing data along with more test-time compute to train models to do better.

Generating a biomedical knowledge graph question answering dataset

  17 Jan 2025
Introducing PrimeKGQA - a scalable approach to dataset generation, harnessing the power of large language models.

The Machine Ethics podcast: 2024 in review with Karin Rudolph and Ben Byford

Karin Rudolph and Ben Byford talk about 2024 touching on the EU AI Act, agent-based AI and advertising, AI search and access to information, conflicting goals of many AI agents, and much more.

Playbook released with guidance on creating images of AI

  15 Jan 2025
Archival Images of AI project enables the creation of meaningful and compelling images of AI.

The Good Robot podcast: Lithium extraction in the Atacama with Sebastián Lehuedé

  13 Jan 2025
Eleanor and Kerry chat to Sebastián Lehuedé about data activism, the effects of lithium extraction, and the importance of reflexive research ethics.

Interview with Erica Kimei: Using ML for studying greenhouse gas emissions from livestock

  10 Jan 2025
Find out about work that brings together agriculture, environmental science, and advanced data analytics.

TELL: Explaining neural networks using logic

  09 Jan 2025
Alessio and colleagues have developed a neural network that can be directly transformed into logic.




AIhub is supported by:






©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association