ΑΙhub.org
 

How to benefit from AI without losing your human self – a fireside chat from IEEE Computational Intelligence Society


by
02 December 2024



share this:

The image is a very detailed, black-and-white sketch-like illustration featuring a complex scene of interconnected figures and technology. The artwork portrays various individuals in different environments to represent the relationship between technology and humans. 

In the foreground, multiple people are surrounded by computer screens filled with data visualisations, charts, and technical information. A woman seated in an armchair appears deep in thought, surrounded by data-filled monitors. Beside her, a man leans over, using a tablet to assist with their inspection of a plant or tree. In the centre, a figure holds a large frame or screen displaying anatomical illustrations, representing the use of AI to analyse medical imagery. To the left, another person is intently observing a computer screen, while a second figure nearby is deeply immersed in analysing data. A woman dominates the right side of the composition, gazing upwards as if in contemplation or envisioning something beyond the immediate scene. The background features more people, including a family holding hands, and other abstract representations of data.Ariyana Ahmad & The Bigger Picture / Better Images of AI / AI is Everywhere / Licenced by CC-BY 4.0

In this fireside chat from IEEE Computational Intelligence Society, Tayo Obafemi-Ajayi (Missouri State University) asks Hava T. Siegelmann (University of Massachusetts, Amherst) about how to benefit from AI without losing your human self.

You can watch the chat in full below:




IEEE Computational Intelligence Society




            AIhub is supported by:



Related posts :



Machine learning for atomic-scale simulations: balancing speed and physical laws

How much underlying physics can we safely “shortcut” without breaking a simulation?

Policy design for two-sided platforms with participation dynamics: Interview with Haruka Kiyohara

  09 Oct 2025
Studying the long-term impacts of decision-making algorithms on two-sided platforms such as e-commerce or music streaming apps.

The Machine Ethics podcast: What excites you about AI? Vol.2

This is a bonus episode looking back over answers to our question: What excites you about AI?

Interview with Janice Anta Zebaze: using AI to address energy supply challenges

  07 Oct 2025
Find out more about research combining renewable energy systems, tribology, and artificial intelligence.

How does AI affect how we learn? A cognitive psychologist explains why you learn when the work is hard

  06 Oct 2025
Early research is only beginning to scratch the surface of how AI technology will truly affect learning and cognition in the long run.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

  03 Oct 2025
Find out more about research developing scalable and adaptive deep learning frameworks.

Diffusion beats autoregressive in data-constrained settings

  03 Oct 2025
How can we trade off more compute for less data?

Forthcoming machine learning and AI seminars: October 2025 edition

  02 Oct 2025
A list of free-to-attend AI-related seminars that are scheduled to take place between 3 October and 30 November 2025.



 

AIhub is supported by:






 












©2025.05 - Association for the Understanding of Artificial Intelligence